The mechanical properties of bettong and potoroo foods
D. Rex Mitchell A B * , Justin A. Ledogar C , Damien Andrew D , Ian Mathewson E , Vera Weisbecker A B and Karl Vernes FA
B
C
D
E
F
Abstract
Potoroid marsupials (bettongs and potoroos of the family Potoroidae) are considered ecosystem engineers because of the roles they play in maintaining biodiversity. However, severe declines since European arrival have necessitated intense conservation efforts. Vital to these efforts is an understanding of the physical challenges that define their niches. The mechanical properties of their foods, such as toughness and stiffness, represent a physical interface with the environment that can contribute to quantitatively defining their niches. Here, we provide mechanical property data from wild bettong and potoroo foods, such as roots and tubers, fruit, fungi, invertebrates, seeds, and leaves. Toughness ranged from approximately 56.58 J/m2 (fungal sporocarp of Descolea sp.) to 2568.15 J/m2 (tubers of the blue yam, Brunoniella australis). Similarly, stiffness of the wild foods ranged from 1.15 MPa for Descolea sp. to 30.4 MPa for B. australis. However, the mechanical demands of accessing the kernels from within the shells (testae) of sandalwood and quandong (Santalum spp.) seeds far exceed measurements of any foods tested. We also tested some farmed foods, alongside inclusion of data from previous studies. Taken together, these data can also improve selection of comparable foods in designing diets for potoroids, and other species, in captivity.
Keywords: captive management, conservation, diet, elastic modulus, fracture toughness, habitat use, mastication, Potoroidae.
References
Agrawal, K. R., Lucas, P. W., Prinz, J. F., and Bruce, I. C. (1997). Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Archives of Oral Biology 42(1), 1-9.
| Crossref | Google Scholar | PubMed |
Bennett, A. F., and Baxter, B. J. (1989). Diet of the long-nosed potoroo, Potorous tridactylus (Marsupialia: Potoroidae), in South-western Victoria. Australian Wildlife Research 16, 263-271.
| Crossref | Google Scholar |
Bice, J., and Moseby, K. (2008). Diets of the re-introduced greater bilby (Macrotis lagotis) and burrowing bettong (Bettongia lesueur) in the Arid Recovery Reserve, Northern South Australia. Australian Mammalogy 30(1), 1-12.
| Crossref | Google Scholar |
Caldwell, E., Read, J., and Sanson, G. D. (2016). Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Annals of Botany 117(2), 349-361.
| Crossref | Google Scholar | PubMed |
Chalk‐Wilayto, J., Fogaça, M. D., Wright, B. W., van Casteren, A., Fragaszy, D. M., Izar, P., Visalberghi, E., Strait, D. S., Ross, C. F., and Wright, K. A (2022). Effects of food material properties and embedded status on food processing efficiency in bearded capuchins. American Journal of Biological Anthropology 178(4), 617-635.
| Crossref | Google Scholar |
Chapman, T. F. (2015). Reintroduced burrowing bettongs (Bettongia lesueur) scatter hoard sandalwood (Santalum spicatum) seed. Australian Journal of Zoology 63(1), 76-79.
| Crossref | Google Scholar |
Claridge, A. W., Tanton, M. T., Seebeck, J. H., Cork, S. J., and Cunningham, R. B. (1992). Establishment of ectomycorrhizae on the roots of two species of Eucalyptus from fungal spores contained in the faeces of the long‐nosed potoroo (Potorous tridactylus). Australian Journal of Ecology 17(2), 207-217.
| Crossref | Google Scholar |
Claridge, A. W., Tanton, M. T., and Cunningham, R. B. (1993). Hypogeal fungi in the diet of the long-nosed potoroo (Potorous tridactylus) in mixed-species and regrowth Eucalypt forest stands in South-eastern Australia. Wildlife Research 20, 321-338.
| Crossref | Google Scholar |
Coiner-Collier, S., Scott, R. S., Chalk-Wilayto, J., Cheyne, S. M., Constantino, P., Dominy, N. J., Elgart, A. A., Glowacka, H., Loyola, L. C., Ossi-Lupo, K., Raguet-Schofield, M., Talebi, M. G., Sala, E. A., Sieradzy, P., Taylor, A. B., Vinyard, C. J., Wright, B. W., Yamashita, N., Lucas, P. W., and Vogel, E. R. (2016). Primate dietary ecology in the context of food mechanical properties. Journal of Human Evolution 98, 103-118.
| Crossref | Google Scholar | PubMed |
Danks, M., Lebel, T., and Vernes, K. (2010). ‘Cort short on a mountaintop’ – Eight new species of sequestrate Cortinarius from sub-alpine Australia and affinities to sections within the genus. Persoonia 24, 106-126.
| Crossref | Google Scholar | PubMed |
Danks, M., Lebel, T., Vernes, K., and Andrew, N. (2013). Truffle-like fungi sporocarps in a eucalypt-dominated landscape: patterns in diversity and community structure. Fungal Diversity 58(1), 143-157.
| Crossref | Google Scholar |
Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., and Lucas, P. W. (1996). A portable fracture toughness tester for biological materials. Measurement Science and Technology 7, 954-962.
| Crossref | Google Scholar |
Davies, G. T. O., Kirkpatrick, J. B., Cameron, E. Z., Carver, S., and Johnson, C. N. (2019). Ecosystem engineering by digging mammals: effects on soil fertility and condition in Tasmanian temperate woodland. Royal Society Open Science 6(1), 180621.
| Crossref | Google Scholar | PubMed |
Decker, O., Eldridge, D. J., and Gibb, H. (2019). Restoration potential of threatened ecosystem engineers increases with aridity: broad scale effects on soil nutrients and function. Ecography 42(8), 1370-1382.
| Crossref | Google Scholar |
Eldridge, D. J., and James, A. I. (2009). Soil‐disturbance by native animals plays a critical role in maintaining healthy Australian landscapes. Ecological Management & Restoration 10, S27-S34.
| Crossref | Google Scholar |
Garkaklis, M. J., Bradley, J. S., and Wooller, R. D. (2004). Digging and soil turnover by a mycophagous marsupial. Journal of Arid Environments 56(3), 569-578.
| Crossref | Google Scholar |
Green, K., Tory, M. K., Mitchell, A. T., Tennant, P., and May, T. W. (1999). The diet of the long‐footed potoroo (Potorous longipes). Australian Journal of Ecology 24(2), 151-156.
| Crossref | Google Scholar |
Guiler, E. R. (1971). Food of the potoroo (Marsupialia, Macropodidae). Journal of Mammalogy 52(1), 232-234.
| Crossref | Google Scholar |
Hartstone-Rose, A., Selvey, H., Villari, J. R., Atwell, M., and Schmidt, T. (2014). The three-dimensional morphological effects of captivity. PLoS One 9(11), e113437.
| Crossref | Google Scholar | PubMed |
Jones, C. G., Lawton, J. H., and Shachak, M. (1994). Organisms as Ecosystem Engineers. Oikos 69, 373-386.
| Crossref | Google Scholar |
Laird, M. F., Wright, B. W., Rivera, A. O., Fogaça, M. D., van Casteren, A., Fragaszy, D. M., Izar, P., Visalberghi, E., Scott, R. S., Strait, D. S., Ross, C. F., and Wright, K. A. (2020). Ingestive behaviors in bearded capuchins (Sapajus libidinosus). Scientific Reports 10(1), 20850.
| Crossref | Google Scholar | PubMed |
Laird, M. F., Punjani, Z., Oshay, R. R., Wright, B. W., Fogaça, M. D., van Casteren, A., Izar, P., Visalberghi, E., Fragazy, D., Strait, D. S., Ross, C. F., and Wright, K. A. (2022). Feeding postural behaviors and food geometric and material properties in bearded capuchin monkeys (Sapajus libidinosus). American Journal of Biological Anthropology 178(1), 3-16.
| Crossref | Google Scholar |
Lambert, J. E., Chapman, C. A., Wrangham, R. W., and Conklin-Brittain, N. L. (2004). Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology 125(4), 363-368.
| Crossref | Google Scholar | PubMed |
Loveys, B. R., and Jusaitis, M. (1994). Stimulation of germination of quandong (Santalum acuminatum) and other Australian native plant seeds. Australian Journal of Botany 42(5), 565-574.
| Crossref | Google Scholar |
Lucas, P. W., Beta, T., Darvell, B. W., Dominy, N. J., Essackjee, H. C., Lee, P. K., Osorio, D., Ramsden, L., Yamashita, N., and Yuen, T. D. (2001). Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatol 72(1), 11-25.
| Crossref | Google Scholar | PubMed |
McDowell, M. C., Haouchar, D., Aplin, K. P., Bunce, M., Baynes, A., and Prideaux, G. J. (2015). Morphological and molecular evidence supports specific recognition of the recently extinct Bettongia anhydra (Marsupialia: Macropodidae). Journal of Mammalogy 96(2), 287-296.
| Crossref | Google Scholar |
McGraw, W. S., Van Casteren, A., Kane, E. E., Geissler, E., Burrows, B., and Daegling, D. J. (2016). Feeding and oral processing behaviors of two colobine monkeys in Tai Forest, Ivory Coast. Journal of Human Evolution 98, 90-102.
| Crossref | Google Scholar | PubMed |
McIlwee, A. P., and Johnson, C. N. (2002). The contribution of fungus to the diets of three mycophagous marsupials in Eucalyptus forests, revealed by stable isotope analysis. Functional Ecology 12(2), 223-231.
| Crossref | Google Scholar |
McNamara, J. A. (2014). Bettong diet and dentition. The South Australian Naturalist 88(2), 80-90.
| Crossref | Google Scholar |
Mitchell, D. R., Sherratt, E., Ledogar, J. A., and Wroe, S. (2018). The biomechanics of foraging determines face length among kangaroos and their relatives. Proceedings of the Royal Society B: Biological Sciences 285(1881), 20180845.
| Crossref | Google Scholar | PubMed |
Mitchell, D. R., Sherratt, E., Sansalone, G., Ledogar, J. A., Flavel, R. J., and Wroe, S. (2020). Feeding Biomechanics Influences Craniofacial Morphology at the Subspecies Scale among Australian Pademelons (Macropodidae: Thylogale). Journal of Mammalian Evolution 27(2), 199-209.
| Crossref | Google Scholar |
Mitchell, D. R., Wroe, S., Ravosa, M. J., and Menegaz, R. A. (2021). More challenging diets sustain feeding performance: applications toward the captive rearing of wildlife. Integrative Organismal Biology 3(1), obab030.
| Crossref | Google Scholar | PubMed |
Murphy, M. T., Garkaklis, M. J., and Hardy, G. E. S. J. (2005). Seed caching by woylies Bettongia penicillata can increase sandalwood Santalum spicatum regeneration in Western Australia. Austral Ecology 30, 747-755.
| Crossref | Google Scholar |
Murphy, M., Howard, K., Hardy, G. E. S. J., and Dell, B. (2015). When losing your nuts increases your reproductive success: sandalwood (Santalum spicatum) nut caching by the woylie (Bettongia penicillata). Pacific Conservation Biology 21(3), 243-252.
| Crossref | Google Scholar |
Neilly, H., and Schwarzkopf, L. (2018). Heavy livestock grazing negatively impacts a marsupial ecosystem engineer. Journal of Zoology 305(1), 35-42.
| Crossref | Google Scholar |
Nest, C., Elliott, T. F., Cooper, T., and Vernes, K. (2023). Seasonal consumption of mycorrhizal fungi by a marsupial-dominated mammal community. Fungal Ecology 64, 101247.
| Crossref | Google Scholar |
Paine, O. C. C., Koppa, A., Henry, A. G., Leichliter, J. N., Codron, D., Codron, J., Lambert, J. E., and Sponheimer, M. (2018). Grass leaves as potential hominin dietary resources. Journal of Human Evolution 117, 44-52.
| Crossref | Google Scholar | PubMed |
Palmer, B. J., Beca, G., Erickson, T. E., Hobbs, R. J., and Valentine, L. E. (2021). New evidence of seed dispersal identified in Australian mammals. Wildlife Research 48(7), 635-642.
| Crossref | Google Scholar |
Pardoe, C., Fullagar, R., and Hayes, E. (2019). Quandong stones: A specialised Australian nut-cracking tool. PLoS One 14(10), e0222680.
| Crossref | Google Scholar | PubMed |
Priddel, D., and Wheeler, R. (2004). An experimental translocation of brush-tailed bettongs (Bettongia penicillata) to western New South Wales. Wildlife Research 31, 421-432.
| Crossref | Google Scholar |
Read, J., and Sanson, G. D. (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytologist 160(1), 81-99.
| Crossref | Google Scholar | PubMed |
Robley, A. J., Short, J., and Bradley, S. (2008). Dietary overlap between the burrowing bettong (Bettongia lesueur) and the European rabbit (Oryctolagus cuniculus) in semi-arid coastal Western Australia. Wildlife Research 28, 341-349.
| Crossref | Google Scholar |
Ross, C. E., Munro, N. T., Barton, P. S., Evans, M. J., Gillen, J., Macdonald, B. C. T., McIntyre, S., Cunningham, S. A., and Manning, A. D. (2019). Effects of digging by a native and introduced ecosystem engineer on soil physical and chemical properties in temperate grassy woodland. PeerJ 7, e7506.
| Crossref | Google Scholar | PubMed |
Ross, C. E., McIntyre, S., Barton, P. S., Evans, M. J., Cunningham, S. A., and Manning, A. D. (2020). A reintroduced ecosystem engineer provides a germination niche for native plant species. Biodiversity and Conservation 29(3), 817-837.
| Crossref | Google Scholar |
Sander, U., Short, J., and Turner, B. (1997). Social organisation and warren use of the burrowing bettong, Bettongia lesueur (Macropodoidea: Potoroidae). Wildlife Research 24, 143-157.
| Crossref | Google Scholar |
Sanson, G., Read, J., Aranwela, N., Clissold, F., and Peeters, P. (2001). Measurement of leaf biomechanical properties in studies of herbivory: Opportunities, problems and procedures. Austral Ecology 26, 535-546.
| Crossref | Google Scholar |
Short, J. (1998). The extinction of rat-kangaroos (Marsupialia: Potoroidae) in New South Wales, Australia. Biological Conservation 86(3), 365-377.
| Crossref | Google Scholar |
Short, J., and Turner, B. (2000). Reintroduction of the burrowing bettong Bettongia lesueur (Marsupialia: Potoroidae) to mainland Australia. Biological Conservation 96, 185-196.
| Crossref | Google Scholar |
Talebi, M. G., Sala, E. A., Carvalho, B., Villani, G. M., Lucas, P. W., and van Casteren, A. (2016). Membrane-plate transition in leaves as an influence on dietary selectivity and tooth form. Journal of Human Evolution 98, 18-26.
| Crossref | Google Scholar | PubMed |
Taylor, R. J. (1992). Seasonal changes in the diet of the Tasmanian bettong (Bettongia gaimardi), a mycophagous marsupial. Journal of Mammalogy 73(2), 408-414.
| Crossref | Google Scholar |
van Casteren, A., Venkataraman, V., Ennos, A. R., and Lucas, P. W. (2016). Novel developments in field mechanics. Journal of Human Evolution 98, 5-17.
| Crossref | Google Scholar | PubMed |
van Casteren, A., Wright, E., Kupczik, K., and Robbins, M. M. (2019). Unexpected hard-object feeding in western lowland gorillas. American Journal of Physical Anthropology 170(3), 433-438.
| Crossref | Google Scholar | PubMed |
Vernes, K., and Jarman, P. (2014). Long-nosed potoroo (Potorous tridactylus) behaviour and handling times when foraging for buried truffles. Australian Mammalogy 36(1), 128-130.
| Crossref | Google Scholar |
Vernes, K., Castellano, M., and Johnson, C. N. (2002). Effects of season and fire on the diversity of hypogeous fungi consumed by a tropical mycophagous marsupial. Journal of Animal Ecology 70(6), 945-954.
| Crossref | Google Scholar |
Weisbecker, V., Guillerme, T., Speck, C., Sherratt, E., Abraha, H. M., Sharp, A. C., Terhune, C. E., Collins, S., Johnston, S., and Panagiotopoulou, O. (2019). Individual variation of the masticatory system dominates 3D skull shape in the herbivory-adapted marsupial wombats. Frontiers in Zoology 16, 41.
| Crossref | Google Scholar | PubMed |
Westerman, M., Loke, S., and Springer, M. S. (2004). Molecular phylogenetic relationships of two extinct potoroid marsupials, Potorous platyops and Caloprymnus campestris (Potoroinae: Marsupialia). Molecular Phylogenetics and Evolution 31(2), 476-485.
| Crossref | Google Scholar | PubMed |
Wieczkowski, J. (2009). Brief communication: Puncture and crushing resistance scores of Tana river mangabey (Cercocebus galeritus) diet items. American Journal of Physical Anthropology 140(3), 572-577.
| Crossref | Google Scholar | PubMed |
Williams, S. H., Wright, B. W., Truong, V., Daubert, C. R., and Vinyard, C. J. (2005). Mechanical properties of foods used in experimental studies of primate masticatory function. American Journal of Primatology 67(3), 329-346.
| Crossref | Google Scholar | PubMed |
Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution 48(5), 473-492.
| Crossref | Google Scholar | PubMed |
Zosky, K. L., Wayne, A. F., Bryant, K. A., Calver, M. C., and Scarff, F. R. (2017). Diet of the critically endangered woylie (Bettongia penicillata ogilbyi) in south-western Australia. Australian Journal of Zoology 65(5), 302-312.
| Crossref | Google Scholar |