Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Morphological variation in skull shape and size across extinct and extant populations of the greater stick-nest rat (Leporillus conditor): implications for translocation

Isabelle R. Onley https://orcid.org/0000-0003-2053-4002 A * , Katherine E. Moseby B , Jeremy J. Austin A and Emma Sherratt C
+ Author Affiliations
- Author Affiliations

A Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Adelaide, SA 5005, Australia.

B Centre for Ecosystem Sciences, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2035, Australia.

C School of Biological Sciences, The University of Adelaide, South Australia, Adelaide, SA 5005, Australia.

* Correspondence to: isabelle.onley@adelaide.edu.au

Handling Editor: Barry Richardson

Australian Mammalogy 44(3) 352-363 https://doi.org/10.1071/AM21047
Submitted: 8 December 2021  Accepted: 21 January 2022   Published: 4 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Within-species morphological variation is often observed across spatial and climatic gradients. Understanding this variation is important to conservation planning, as specialised adaptations may influence a population’s persistence following translocation. However, knowing whether local adaptations are prevalent within a species can be challenging when the species has undergone range contractions. Here, we used museum specimens to study size and shape variation of the greater stick-nest rat (Leporillus conditor). We aimed to determine whether intraspecific size and shape variation previously existed within the species across its historical range, and inform on possible implications for translocations of the remaining extant population. We found significantly larger skull size in the Franklin Islands and arid populations, possibly indicating a historically continuous population experiencing similar selection pressures such as high predation pressure, competition with other large arid zone rodents or climatic extremes. Conversely, skull shape variation within the species adheres to an allometric trajectory, indicating no specific local adaptations of skull shape. This absence of local skull shape adaptation suggests that the Franklin Islands population is likely suitable for mainland translocations. However, further research into the historical phylogeography of the species is recommended to identify whether large size resulted from shared ancestry or convergent evolution.

Keywords: conserved cranial allometry, intraspecific variation, local adaptation, morphology, muridae, reintroduction biology, rodent, translocation.


References

Agrawal, A. A. (2001). Phenotypic Plasticity in the Interactions and Evolution of Species. Science 294, 321–326.
Phenotypic Plasticity in the Interactions and Evolution of Species.Crossref | GoogleScholarGoogle Scholar | 11598291PubMed |

Alexander, H. J., Taylor, J. S., Wu, S. S.-T., and Breden, F. (2006). Parallel evolution and vicariance in the guppy (Poecilia reticulata) over multiple spatial and temporal scales. Evolution; International Journal of Organic Evolution 60, 2352–2369.
Parallel evolution and vicariance in the guppy (Poecilia reticulata) over multiple spatial and temporal scales.Crossref | GoogleScholarGoogle Scholar | 17236426PubMed |

Alexandrino, J., Baird, S. J. E., Lawson, L., Macey, J. R., Moritz, C., and Wake, D. B. (2005). Strong selection against hybrids at a hybrid zone in the Ensatina ring species complex and its evolutionary implications. Evolution; International Journal of Organic Evolution 59, 1334–1347.
Strong selection against hybrids at a hybrid zone in the Ensatina ring species complex and its evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 16050109PubMed |

Alhajeri, B. H., and Steppan, S. J. (2018). A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents. Journal of Mammalogy 99, 1197–1216.
A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents.Crossref | GoogleScholarGoogle Scholar |

Arnoux, E., Eraud, C., Navarro, N., Tougard, C., Thomas, A., Cavallo, F., Vetter, N., Faivre, B., and Garnier, S. (2014). Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri. Heredity 113, 514–525.
Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri.Crossref | GoogleScholarGoogle Scholar | 24984605PubMed |

Assis, A. P. A., Rossoni, D. M., Patton, J. L., and Marroig, G. (2017). Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (Tamias). Evolution 71, 595–609.
Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (Tamias).Crossref | GoogleScholarGoogle Scholar |

Basso, A. P., Sidorkewicj, N. S., Casanave, E. B., and Mason, M. J. (2020). The middle ear of the pink fairy armadillo Chlamyphorus truncatus (Xenarthra, Cingulata, Chlamyphoridae): comparison with armadillo relatives using computed tomography. Journal of Anatomy 236, 809–826.
The middle ear of the pink fairy armadillo Chlamyphorus truncatus (Xenarthra, Cingulata, Chlamyphoridae): comparison with armadillo relatives using computed tomography.Crossref | GoogleScholarGoogle Scholar | 31997377PubMed |

Bertrand, O., Schillaci, M., and Silcox, M. (2015). Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents. Journal of Vertebrate Paleontology 36, 1–10.

Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L. K., Lau, O. L., and Paull, J. S. (2010). Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences 277, 1789–1797.
| 20164100PubMed |

Bolton, J., and Moseby, K. (2004). The activity of Sand Goannas Varanus gouldii and their interaction with reintroduced Greater Stick-nest Rats Leporillus conditor. Pacific Conservation Biology 10, 193–201.
The activity of Sand Goannas Varanus gouldii and their interaction with reintroduced Greater Stick-nest Rats Leporillus conditor.Crossref | GoogleScholarGoogle Scholar |

Bowers, M. A., and Brown, J. H. (1982). Body Size and Coexistence in Desert Rodents: Chance or Community Structure? Ecology 63, 391–400.
Body Size and Coexistence in Desert Rodents: Chance or Community Structure?Crossref | GoogleScholarGoogle Scholar |

Brown, W., and Wilson, E. (1956). Character displacement. Systematic Zoology 5, 49–64.
Character displacement.Crossref | GoogleScholarGoogle Scholar |

Buckley, S. J., Domingos, F. M., Attard, C. R., Brauer, C. J., Sandoval-Castillo, J., Lodge, R., Unmack, P. J., and Beheregaray, L. B. (2018). Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation. Royal Society Open Science 5, 172125.
Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation.Crossref | GoogleScholarGoogle Scholar | 30110415PubMed |

Buuren, S. V., and Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45, 1–67.
mice: Multivariate Imputation by Chained Equations in R.Crossref | GoogleScholarGoogle Scholar |

Campbell‐Tennant, D. J. E., Gardner, J. L., Kearney, M. R., and Symonds, M. R. E. (2015). Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots. Journal of Biogeography 42, 1163–1175.
Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots.Crossref | GoogleScholarGoogle Scholar |

Case, T. J. (1978). A General Explanation for Insular Body Size Trends in Terrestrial Vertebrates. Ecology 59, 1–18.
A General Explanation for Insular Body Size Trends in Terrestrial Vertebrates.Crossref | GoogleScholarGoogle Scholar |

Charlesworth, D., and Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics 10, 783–796.
The genetics of inbreeding depression.Crossref | GoogleScholarGoogle Scholar | 19834483PubMed |

Clavel, J., Merceron, G., and Escarguel, G. (2014). Missing Data Estimation in Morphometrics: How Much is Too Much? Systematic biology 63, 203–218.
Missing Data Estimation in Morphometrics: How Much is Too Much?Crossref | GoogleScholarGoogle Scholar | 24335428PubMed |

Cooper, N. K., Adams, M., Anthony, C., and Schmitt, L. (2003). Morphological and genetic variation in Leggadina (Thomas, 1910) with special reference to Western Australian populations. Records of the Western Australian Museum 21, 333–351.
Morphological and genetic variation in Leggadina (Thomas, 1910) with special reference to Western Australian populations.Crossref | GoogleScholarGoogle Scholar |

Copley, P. B. (1988) The stick-nest rats of Australia : a final report to World Wildlife Fund (Australia). National Parks and Wildlife Service, Dept. of Environment and Planning. Adelaide, South Australia.

Copley, P. (1999). Natural histories of Australia’s stick-nest rats, genus Leporillus (Rodentia : Muridae). Wildlife Research 26, 513.
Natural histories of Australia’s stick-nest rats, genus Leporillus (Rodentia : Muridae).Crossref | GoogleScholarGoogle Scholar |

de Abreu, F. H. T., Schietti, J., and Anciães, M. (2018). Spatial and environmental correlates of intraspecific morphological variation in three species of passerine birds from the Purus–Madeira interfluvium, Central Amazonia. Evolutionary Ecology 32, 191–214.
Spatial and environmental correlates of intraspecific morphological variation in three species of passerine birds from the Purus–Madeira interfluvium, Central Amazonia.Crossref | GoogleScholarGoogle Scholar |

Degen, A. A., Khokhlova, I. S., Kam, M., and Nagy, K. A. (1997). Body size, granivory and seasonal dietary shifts in desert gerbilline rodents. Functional Ecology 11, 53–59.
Body size, granivory and seasonal dietary shifts in desert gerbilline rodents.Crossref | GoogleScholarGoogle Scholar |

Des Roches, S., Pendleton, L. , Shapiro, B., and Palkovacs, E.  (2021). Conserving intraspecific variation for nature’s contributions to people. Nature Ecology & Evolution 5, 574–582.
Conserving intraspecific variation for nature’s contributions to people.Crossref | GoogleScholarGoogle Scholar |

Drake, A. , and Klingenberg, C.  (2008). The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences 275, 71–76.
The pace of morphological change: historical transformation of skull shape in St Bernard dogs.Crossref | GoogleScholarGoogle Scholar | 17956847PubMed |

Dubois, A. (2003). The relationships between taxonomy and conservation biology in the century of extinctions. Comptes Rendus Biologies 326, 9–21.
The relationships between taxonomy and conservation biology in the century of extinctions.Crossref | GoogleScholarGoogle Scholar |

Dunlop, J., and Morris, K. (2018). Environmental determination of body size in mammals: Rethinking ‘island dwarfism’ in the golden bandicoot. Austral Ecology 43, 817–827.
Environmental determination of body size in mammals: Rethinking ‘island dwarfism’ in the golden bandicoot.Crossref | GoogleScholarGoogle Scholar |

Environment Australia (2000) ‘Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and the Development of Version 5.1 - Summary Report.’ (Department of Environment and Heritage: Canberra, Australia.)

Fabre, P.-H., Pagès, M., Musser, G. G., Fitriana, Y. S., Fjeldså, J., Jennings, A., Jønsson, K. A., Kennedy, J., Michaux, J., Semiadi, G., Supriatna, N., and Helgen, K. M. (2013). A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics. Zoological Journal of the Linnean Society 169, 408–447.
A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics.Crossref | GoogleScholarGoogle Scholar |

Ficetola, G. F., Colleoni, E., Renaud, J., Scali, S., Padoa-Schioppa, E., and Thuiller, W. (2016). Morphological variation in salamanders and their potential response to climate change. Global Change Biology 22, 2013–2024.
Morphological variation in salamanders and their potential response to climate change.Crossref | GoogleScholarGoogle Scholar | 26910389PubMed |

Foth, C., Bona, P., and Desojo, J. B. (2015). Intraspecific variation in the skull morphology of the black caiman Melanosuchus niger (Alligatoridae, Caimaninae). Acta Zoologica 96, 1–13.
Intraspecific variation in the skull morphology of the black caiman Melanosuchus niger (Alligatoridae, Caimaninae).Crossref | GoogleScholarGoogle Scholar |

Freudenthal, M., and Martín-Suárez, E. (2013). Estimating body mass of fossil rodents. Scripta Geologica 145, 1–513.

Godfray, H. C. J., Knapp, S., and Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, 711–719.
The role of taxonomy in species conservation.Crossref | GoogleScholarGoogle Scholar |

Grant, P. R. (1972). Convergent and divergent character displacement. Biological Journal of the Linnean Society 4, 39–68.
Convergent and divergent character displacement.Crossref | GoogleScholarGoogle Scholar |

Grant, P. R., and Grant, B. R. (2002). Adaptive radiation of Darwin’s finches: Recent data help explain how this famous group of Galapagos birds evolved, although gaps in our understanding remain. American Scientist 90, 130–139.
Adaptive radiation of Darwin’s finches: Recent data help explain how this famous group of Galapagos birds evolved, although gaps in our understanding remain.Crossref | GoogleScholarGoogle Scholar |

Grodzinski, W., and Weiner, J. (1984). Energetics of small and large mammals. Acta Zoological Fennica 172, 7–10.

Gustafson, G., and Malmö, D. O. (1950). Age Determinations on Teeth. The Journal of the American Dental Association 41, 45–54.
Age Determinations on Teeth.Crossref | GoogleScholarGoogle Scholar | 15428197PubMed |

Haddaway, N. R., Mortimer, R. J. G., Christmas, M., Grahame, J. W., and Dunn, A. M. (2012). Morphological diversity and phenotypic plasticity in the threatened British white-clawed crayfish (Austropotamobius pallipes). Aquatic Conservation: Marine and Freshwater Ecosystems 22, 220–231.
Morphological diversity and phenotypic plasticity in the threatened British white-clawed crayfish (Austropotamobius pallipes).Crossref | GoogleScholarGoogle Scholar |

Haim, A., Alma, A., and Neuman, A. (2006). Body mass is a thermoregulatory adaptation of diurnal rodents to the desert environment. Second International Meeting on Physiology and Pharmacology of Temperature Regulation 31, 168–171.

Haji-Maghsoudi, S., Haghdoost, A.-A., Rastegari, A., and Baneshi, M. R. (2013). Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons. International Journal of Health Policy and Management 1, 69–77.
Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons.Crossref | GoogleScholarGoogle Scholar | 24596839PubMed |

Hawlitschek, O., Porch, N., Hendrich, L., and Balke, M. (2011). Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding. PLoS One 6, e16662.
Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 21347370PubMed |

Hereford, J. (2009). A Quantitative Survey of Local Adaptation and Fitness Trade‐Offs. The American Naturalist 173, 579–588.
A Quantitative Survey of Local Adaptation and Fitness Trade‐Offs.Crossref | GoogleScholarGoogle Scholar | 19272016PubMed |

Herrel, A., Podos, J., Huber, S. K., and Hendry, A. P. (2005). Evolution of bite force in Darwin’s finches: a key role for head width. Journal of Evolutionary Biology 18, 669–675.
Evolution of bite force in Darwin’s finches: a key role for head width.Crossref | GoogleScholarGoogle Scholar | 15842496PubMed |

Herrmann, N. C., Stroud, J. T., and Losos, J. B. (2021). The Evolution of ‘Ecological Release’ into the 21st Century. Trends in Ecology & Evolution 36, 206–215.
The Evolution of ‘Ecological Release’ into the 21st Century.Crossref | GoogleScholarGoogle Scholar |

Horie, C. (1990). Deterioration of skin in museum collections. Polymer Degradation and Stability 29, 109–133.
Deterioration of skin in museum collections.Crossref | GoogleScholarGoogle Scholar |

Hounkpèvi, A., Salako, V. K., Donhouédé, J. C. F., Daï, E. H., Tovissodé, F., Kakaï, R. G., and Assogbadjo, A. E. (2020). Natural intraspecific trait variation patterns of the wild soursop Annona senegalensis (Annonaceae) along a climatic gradient in Benin, West Africa. Plant Ecology and Evolution 153, 455–465.
Natural intraspecific trait variation patterns of the wild soursop Annona senegalensis (Annonaceae) along a climatic gradient in Benin, West Africa.Crossref | GoogleScholarGoogle Scholar |

Keast, A. (1968). Competitive Interactions and the Evolution of Ecological Niches as Illustrated by the Australian Honeyeater Genus Melithreptus (meliphagidae). Evolution 22, 762–784.
Competitive Interactions and the Evolution of Ecological Niches as Illustrated by the Australian Honeyeater Genus Melithreptus (meliphagidae).Crossref | GoogleScholarGoogle Scholar | 28562847PubMed |

Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics 27, 501–542.
When does morphology matter?Crossref | GoogleScholarGoogle Scholar |

Koo, T. K., and Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine 15, 155–163.
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.Crossref | GoogleScholarGoogle Scholar | 27330520PubMed |

 Ladiges, P. Y., Bayly, M. J., Nelson, G. J., Williams, D. M., and Knapp, S. (2010) East-west continental vicariance in Eucalyptus subgenus Eucalyptus. In ‘Beyond cladistics: the branching of a paradigm’. (Eds D. M. Williams and S. Knapp.) pp. 267–302. (The Regents of the University of California: Berkeley, California.)
| Crossref |

Larsen, E. (1986). Competitive release in microhabitat use among coexisting desert rodents: a natural experiment. Oecologia 69, 231–237.
Competitive release in microhabitat use among coexisting desert rodents: a natural experiment.Crossref | GoogleScholarGoogle Scholar | 28311364PubMed |

Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D., and Rhodes Jr, O. E. (2006). Assessing Hybridization in Wildlife Populations Using Molecular Markers: A Case Study in Wild Turkeys. The Journal of Wildlife Management 70, 485–492.
Assessing Hybridization in Wildlife Populations Using Molecular Markers: A Case Study in Wild Turkeys.Crossref | GoogleScholarGoogle Scholar |

Lay, D. M. (1972). The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents. Journal of Morphology 138, 41–120.
The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents.Crossref | GoogleScholarGoogle Scholar | 5069372PubMed |

Lee, K. J., and Carlin, J. B. (2012). Recovery of information from multiple imputation: a simulation study. Emerging Themes in Epidemiology 9, 3.
Recovery of information from multiple imputation: a simulation study.Crossref | GoogleScholarGoogle Scholar | 22695083PubMed |

Lema, S. C., and Nevitt, G. A. (2006). Testing an ecophysiological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish. Journal of Experimental Biology 209, 3499–3509.
Testing an ecophysiological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish.Crossref | GoogleScholarGoogle Scholar |

Lostrom, S., Evans, J. P., Grierson, P. F., Collin, S. P., Davies, P. M., and Kelley, J. L. (2015). Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia. Ecology and Evolution 5, 3272–3287.
Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia.Crossref | GoogleScholarGoogle Scholar | 26380663PubMed |

Lovatt, F. M. (2007) A study of the impact of population bottlenecks on the genetics and morphology of reindeer (Rangifer tarandus tarandus) on the island of South Georgia. Doctoral thesis. Durham University. Available at http://etheses.dur.ac.uk/2315/ [Accessed 18 March 2021]

Maestri, R., Fornel, R., Gonçalves, G. L., Geise, L., Freitas, T., and Carnaval, A. (2016). Predictors of intraspecific morphological variability in a tropical hotspot: comparing the influence of random and non-random factors. Journal of Biogeography 43, 2160–2172.
Predictors of intraspecific morphological variability in a tropical hotspot: comparing the influence of random and non-random factors.Crossref | GoogleScholarGoogle Scholar |

Marcy, A. E., Guillerme, T., Sherratt, E., Rowe, K. C., Phillips, M. J., and Weisbecker, V. (2020). Australian Rodents Reveal Conserved Cranial Evolutionary Allometry across 10 Million Years of Murid Evolution. The American Naturalist 196, 755–768.
Australian Rodents Reveal Conserved Cranial Evolutionary Allometry across 10 Million Years of Murid Evolution.Crossref | GoogleScholarGoogle Scholar | 33211559PubMed |

Marshall, A., Altman, D. G., Royston, P., and Holder, R. L. (2010). Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Medical Research Methodology 10, 1–16.
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.Crossref | GoogleScholarGoogle Scholar |

Meachen-Samuels, J., and Van Valkenburgh, B. (2009). Craniodental indicators of prey size preference in the Felidae. Biological Journal of the Linnean Society 96, 784–799.
Craniodental indicators of prey size preference in the Felidae.Crossref | GoogleScholarGoogle Scholar |

Mee, J. A., Bernatchez, L., Reist, J. D., Rogers, S. M., and Taylor, E. B. (2015). Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evolutionary Applications 8, 423–441.
Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.).Crossref | GoogleScholarGoogle Scholar | 26029257PubMed |

Millien, V., and Bovy, H. (2010). When Teeth and Bones Disagree: Body Mass Estimation of a Giant Extinct Rodent. Journal of Mammalogy 91, 11–18.
When Teeth and Bones Disagree: Body Mass Estimation of a Giant Extinct Rodent.Crossref | GoogleScholarGoogle Scholar |

Morris, P. (1972). A review of mammalian age determination methods. Mammal Review 2, 69–104.
A review of mammalian age determination methods.Crossref | GoogleScholarGoogle Scholar |

Mortelliti, A., Castiglia, R., Amori, G., Maryanto, I., and Musser, G. G. (2012). A new species of Margaretamys (Rodentia: Muridae: Murinae: Rattini) from Pegunungan Mekongga, southeastern Sulawesi, Indonesia. Tropical Zoology 25, 74–107.
A new species of Margaretamys (Rodentia: Muridae: Murinae: Rattini) from Pegunungan Mekongga, southeastern Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Mosimann, J. E. (1970). Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65, 930–945.
Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions.Crossref | GoogleScholarGoogle Scholar |

Mosimann, J. E., and James, F. C. (1979). New statistical methods for allometry with application to Florida red-winged blackbirds. Evolution; International Journal of Organic Evolution 33, 444–459.
| 28568176PubMed |

Musser, G. G., and Piik, E. (1982). A new species of Hydromys (Muridae) from western New Guinea (Irian Jaya). Zoologische Mededelingen 56, 153–166.

Onley, I. R., Gardner, J. L., and Symonds, M. R. E. (2020). Spatial and temporal variation in morphology in Australian whistlers and shrike-thrushes: is climate change causing larger appendages? Biological Journal of the Linnean Society 130, 101–113.
Spatial and temporal variation in morphology in Australian whistlers and shrike-thrushes: is climate change causing larger appendages?Crossref | GoogleScholarGoogle Scholar |

Pankakoski, E. (1980). An improved method for age determination in the muskrat, Ondatra zibethica (L.). Annales Zoologici Fennici 17, 113–121.

Pedler, L., and Copley, P. (1993) ‘ Re-introduction of stick-nest rats to Reevesby Island, South Australia.’ (South Australian Department of Environment and Land Management: Biological Conservation Branch: Adelaide, South Australia.)

Peterson, D. A., Hilborn, R., and Hauser, L. (2014). Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation. Nature Communications 5, 3696.
Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation.Crossref | GoogleScholarGoogle Scholar | 24739514PubMed |

Price, T. D., Qvarnström, A., and Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1433–1440.
The role of phenotypic plasticity in driving genetic evolution.Crossref | GoogleScholarGoogle Scholar | 12965006PubMed |

Read, V. T. (1984) ‘The Stick-nest Rats of Australia: a preliminary report.’ (South Australian National Parks and Wildlife Service, Department of Environment and Planning: Adelaide.)

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south‐western Australian biodiversity hotspot. Biological Reviews 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south‐western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |

Robinson, A. C. (1975). The Sticknest Rat, Leporillus conditor, on Franklin Island, Nuyts Archipelago, South Australia. Australian Mammalogy 1, 319–327.

Robinson, A., Canty, P., Mooney, T., and Rudduck, P. (1996) ‘South Australia’s Offshore Islands.’ (Australian Government Publishing Service: Canberra, New South Wales.)

Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics 17, 667–693.
The evolution of phenotypic plasticity in plants.Crossref | GoogleScholarGoogle Scholar |

Short, J., Richards, J. D., and O’Neill, S. (2018). Reintroduction of the greater stick-nest rat (Leporillus conditor) to Heirisson Prong, Shark Bay: an unsuccessful attempt to establish a mainland population. Australian Mammalogy 40, 269–280.
Reintroduction of the greater stick-nest rat (Leporillus conditor) to Heirisson Prong, Shark Bay: an unsuccessful attempt to establish a mainland population.Crossref | GoogleScholarGoogle Scholar |

Short, J., Copley, P., Ruykys, L., Morris, K., Read, J., and Moseby, K. (2019). Review of translocations of the greater stick-nest rat (Leporillus conditor): lessons learnt to facilitate ongoing recovery. Wildlife Research 46, 455–475.
Review of translocations of the greater stick-nest rat (Leporillus conditor): lessons learnt to facilitate ongoing recovery.Crossref | GoogleScholarGoogle Scholar |

Shu, G., Gong, Y., Xie, F., Wu, N. C., and Li, C. (2017). Effects of long-term preservation on amphibian body conditions: implications for historical morphological research. PeerJ 5, e3805.
Effects of long-term preservation on amphibian body conditions: implications for historical morphological research.Crossref | GoogleScholarGoogle Scholar | 28929024PubMed |

Spencer, P. B. S., Rhind, S. G., and Eldridge, M. D. B. (2001). Phylogeographic structure within Phascogale (Marsupialia : Dasyuridae) based on partial cytochrome b sequence. Australian Journal of Zoology 49, 369–377.
Phylogeographic structure within Phascogale (Marsupialia : Dasyuridae) based on partial cytochrome b sequence.Crossref | GoogleScholarGoogle Scholar |

Strong, D. R., Szyska, L. A., and Simberloff, D. S. (1979). Test of community-wide character displacement against null hypotheses. Evolution , 897–913.
Test of community-wide character displacement against null hypotheses.Crossref | GoogleScholarGoogle Scholar | 28568434PubMed |

Tate, G. H. H. (1951). Results of the Archbold Expeditions. No. 65. The rodents of Australia and New Guinea. Bulletin of the American Museum of Natural History 97, 183–430.

Taylor, M. C., Travouillon, K. J., Andrew, M. E., Fleming, P. A., and Warburton, N. M. (2021). Keeping an ear out: size relationship of the tympanic bullae and pinnae in bandicoots and bilbies (Marsupialia: Peramelemorphia). Current Zoology , zoab055.
Keeping an ear out: size relationship of the tympanic bullae and pinnae in bandicoots and bilbies (Marsupialia: Peramelemorphia).Crossref | GoogleScholarGoogle Scholar |

Thackway, R. and Cresswell, I. D. (1995) ‘An interim biogeographic regionalisation for Australia: a framework for setting priorities in the National Reserves System Cooperative Program.’ (Australian Nature Conservation Agency, Reserve Systems Unit: Canberra.)

Thavornkanlapachai, R., Mills, H. R., Ottewell, K., Dunlop, J., Sims, C., Morris, K., Donaldson, F., and Kennington, W. J. (2019). Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie (Bettongia lesueur). Genes 10, 729.
Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie (Bettongia lesueur).Crossref | GoogleScholarGoogle Scholar |

Travouillon, K. J., and Phillips, M. J. (2018). Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species. Zootaxa 4378, 224.
Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species.Crossref | GoogleScholarGoogle Scholar | 29690027PubMed |

Thomas, O. (1921). LXII.-On three new Australian rats. Journal of Natural History 8, 618–622.
LXII.-On three new Australian rats.Crossref | GoogleScholarGoogle Scholar |

Travouillon, K. J., Simões, B. F., Miguez, R. P., Brace, S., Brewer, B., Stemmer, D., Price, G. J., Cramb, J., and Louys, L. (2019). Hidden in plain sight: reassessment of the pig-footed bandicoot, Chaeropus ecaudatus (Peramelemorphia, Chaeropodidae), with a description of a new species from Central Australia, and use of the fossil record to trace its past distribution. Zootaxa 4566, 1–69.
Hidden in plain sight: reassessment of the pig-footed bandicoot, Chaeropus ecaudatus (Peramelemorphia, Chaeropodidae), with a description of a new species from Central Australia, and use of the fossil record to trace its past distribution.Crossref | GoogleScholarGoogle Scholar |

Trewin, D. (2006) ‘Year Book Australia.’ (Australian Bureau of Statistics: Canberra, Australia.)

Van Dyck, S., Strahan, R., Museum, Q., Van Dyck, S., and Strahan, R. (2008) ‘The mammals of Australia.’ (New Holland Publishers: Sydney, Australia.)

Violle, C., Nemergut, D. R., Pu, Z., and Jiang, L. (2011). Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14, 782–787.
Phylogenetic limiting similarity and competitive exclusion.Crossref | GoogleScholarGoogle Scholar | 21672121PubMed |

Voss, R. S. (1988). Systematics and Ecology of the icthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bulletin of the American Museum of Natural History 188, 259–493.

Walsh, R. E., Assis, A. P. A., Patton, J. L., Marroig, G., Dawson, T. E., and Lacey, E. A. (2016). Morphological and dietary responses of chipmunks to a century of climate change. Global Change Biology 22, 3233–3252.
Morphological and dietary responses of chipmunks to a century of climate change.Crossref | GoogleScholarGoogle Scholar | 26732228PubMed |

Warner, D., and Shine, R. (2006). Morphological variation does not influence locomotor performance within a cohort of hatchling lizards (Amphibolurus muricatus, Agamidae). Oikos 114, 126–134.
Morphological variation does not influence locomotor performance within a cohort of hatchling lizards (Amphibolurus muricatus, Agamidae).Crossref | GoogleScholarGoogle Scholar |

Weston, M. A., Clarke, K., Maguire, G. S., and Sumner, J. (2020). Morphological and molecular evidence of population divergence in a widespread shorebird across its southern mainland Australian distribution. Conservation Genetics 21, 757–770.
Morphological and molecular evidence of population divergence in a widespread shorebird across its southern mainland Australian distribution.Crossref | GoogleScholarGoogle Scholar |

Watts, C. H., and Aslin, H. J. (1981). ‘The rodents of Australia.’ (Angus & Robertson.)

White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C., and Austin, J. J. (2018). Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biological Conservation 219, 1–11.
Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A. (2016) Leporillus conditor. The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species.

Wolak, M. E. (2015) ICC: Facilitating Estimation of the Intraclass Correlation Coefficient. Available at http://github.com/matthewwolak/ICC

Zaidaneen, J. A., and Hasaseen, A. A. A. (2008) ‘Re‐introduction of Arabian oryx into Wadi Rum Protected Area, Jordan. In: Global re‐introduction perspectives: Re‐introduction case studies from around the globe.’ pp. 181–184. (IUCN/SSC Re‐introduction Specialist Group and Environment Agency Abu Dhabi: Abu Dhabi.)

Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of Translational Medicine 4, 30–30.
Multiple imputation with multivariate imputation by chained equation (MICE) package.Crossref | GoogleScholarGoogle Scholar | 26889483PubMed |