Apparent piebald variants in quolls (Dasyurus): examples of three recent cases in the spotted-tailed quoll Dasyurus maculatus
Simon B. Z. Gorta A , Brendan Alting A E , Andrew Claridge B C and Timothy Henderson DA Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, 2052 NSW, Australia.
B NSW Department of Primary Industries, Vertebrate Pest Research Unit, 11 Farrer Place, Queanbeyan, NSW 2620, Australia.
C School of Science, University of New South Wales, Canberra, ACT 2601, Australia.
D School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
E Corresponding author. Email: brendanalting@gmail.com
Australian Mammalogy 43(3) 373-377 https://doi.org/10.1071/AM20058
Submitted: 28 August 2020 Accepted: 2 December 2020 Published: 21 January 2021
Abstract
Pelage patterning plays an important role in animal behaviour. Variation in pelage patterns can change with pigment distribution and quantity in individuals. We present three cases of apparent piebaldism – a condition where the body is patchily unpigmented – in the spotted-tailed quoll Dasyurus maculatus. Using a comprehensive dataset of historical descriptions (from Dunlop et al. 2020), we conclude that these cases represent the first description of this phenotype in the genus Dasyurus, but acknowledge capture and testing of these individuals is required to be certain of the cause. Little is known about the implications of pelage patterning in quoll species and further investigation is required to understand the evolutionary and functional role of unaffected and unpigmented variants.
Keywords: albinism, animal colouration, citizen science, c-KIT, coat colour, fur patterns, leucism, marsupial, pelage pattern, piebaldism, spotted-tailed quolls, unpigmentation.
References
Abreu, M., Machado, R., Barbieri, F., Freitas, N., and Oliveira, L. (2013). Anomalous colour in Neotropical mammals: a review with new records for Didelphis sp. (Didelphidae, Didelphimorphia) and Arctocephalus australis (Otariidae, Carnivora. Brazilian Journal of Biology 73, 185–194.| Anomalous colour in Neotropical mammals: a review with new records for Didelphis sp. (Didelphidae, Didelphimorphia) and Arctocephalus australis (Otariidae, Carnivora.Crossref | GoogleScholarGoogle Scholar |
Arroyo-Arce, S., Corrales-Gutiérrez, D., Espinoza-Muñoz, D., Araya-Gamboa, D., and Chávez-Ramos, M. (2019). A leucistic female Canis latrans (Carnivora: Canidae) in Costa Rica. UNED Research Journal 11, 451–454.
| A leucistic female Canis latrans (Carnivora: Canidae) in Costa Rica.Crossref | GoogleScholarGoogle Scholar |
Belcher, C. A., Nelson, J. L., and Darrant, J. P. (2007). Diet of the tiger quoll (Dasyurus maculatus) in south-eastern Australia. Australian Journal of Zoology 55, 117–122.
| Diet of the tiger quoll (Dasyurus maculatus) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |
Blaszczyk, W. M., Arning, L., Hoffmann, K.-P., and Epplen, J. T. (2005). A Tyrosinase missense mutation causes albinism in the Wistar rat. Pigment Cell Research 18, 144–145.
| A Tyrosinase missense mutation causes albinism in the Wistar rat.Crossref | GoogleScholarGoogle Scholar | 15760344PubMed |
Brito, J., and Valdivieso-Bermeo, K. (2016). First records of leucism in eight species of small mammals (Mammalia: Rodentia. Therya 7, 483–489.
| First records of leucism in eight species of small mammals (Mammalia: Rodentia.Crossref | GoogleScholarGoogle Scholar |
Burnett, S. and Dickman, C. (2018). Dasyurus maculatus. The IUCN Red List of Threatened Species: e.T6300A21946847. Available at https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T6300A21946847.en
Caro, T. (2005). The adaptive significance of coloration in mammals. BioScience 55, 125–136.
| The adaptive significance of coloration in mammals.Crossref | GoogleScholarGoogle Scholar |
Caro, T. (2013). The colours of extant mammals. Seminars in Cell & Developmental Biology 24, 542–552.
| The colours of extant mammals.Crossref | GoogleScholarGoogle Scholar |
Caro, T., and Allen, W. L. (2017). Interspecific visual signalling in animals and plants: a functional classification. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20160344.
| Interspecific visual signalling in animals and plants: a functional classification.Crossref | GoogleScholarGoogle Scholar |
Caro, T., and Mallarino, R. (2020). Coloration in mammals. Trends in Ecology & Evolution 35, 357–366.
| Coloration in mammals.Crossref | GoogleScholarGoogle Scholar |
Claridge, A. W., Mifsud, G., Dawson, J., and Saxon, M. J. (2004). Use of infrared digital cameras to investigate aspects of the social behaviour of cryptic species. Wildlife Research 31, 645–650.
| Use of infrared digital cameras to investigate aspects of the social behaviour of cryptic species.Crossref | GoogleScholarGoogle Scholar |
Dickman, C. R. (2014). Micro-carnivores: the ecological role of small dasyurid predators in Australia. In ‘Carnivores of Australia: past, present and future’. (Eds A. Glen, C. Dickman) pp. 241–262. (CSIRO Publishing: Melbourne)
Dunlop, J., Peacock, D., Moore, H., and Cowan, M. (2020). Albinism in Dasyurus species – a collation of historical and modern records. Australian Mammalogy 42, 114–118.
| Albinism in Dasyurus species – a collation of historical and modern records.Crossref | GoogleScholarGoogle Scholar |
Edelaar, P., Donázar, J. A., Soriano, M., Santillán, M. Á., González-Zevallos, D., García Borboroglu, P., Lisnizer, N., Gatto, A. J., Agüero, M. L., and Passera, C. A. (2011). Apparent selective advantage of leucism in a coastal population of Southern caracaras (Falconidae). Evolutionary Ecology Research 13, 187–196.
Edgar, R., and Belcher, C. (1995). Spotted-tailed quoll. In ‘The mammals of Australia’. (Ed. R. Strahan) pp. 67–69. (Reed Books: Sydney)
Emlen, S., and Oring, L. (1977). Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223.
| Ecology, sexual selection, and the evolution of mating systems.Crossref | GoogleScholarGoogle Scholar | 327542PubMed |
Eppley, T. M., Hickey, J. R., and Nibbelink, N. P. (2010). Observation of albinistic and leucistic Black mangabeys (Lophocebus aterrimus) within the Lomako-Yokokala Faunal Reserve, Democratic Republic of Congo. African Primates 7, 50–54.
Glen, A. S., and Dickman, C. R. (2006). Diet of the spotted-tailed quoll (Dasyurus maculatus) in eastern Australia: effects of season, sex and size. Journal of Zoology 269, 241–248.
| Diet of the spotted-tailed quoll (Dasyurus maculatus) in eastern Australia: effects of season, sex and size.Crossref | GoogleScholarGoogle Scholar |
Graipel, M. E., Bogoni, J. A., Giehl, E. L. H., Cerezer, F. O., Cáceres, N. C., and Eizirik, E. (2019). Melanism evolution in the cat family is influenced by intraspecific communication under low visibility. PLoS ONE 14, e0226136.
| Melanism evolution in the cat family is influenced by intraspecific communication under low visibility.Crossref | GoogleScholarGoogle Scholar | 31851714PubMed |
Green, S. D., Duarte, R. C., Kellett, E., Alagaratnam, N., and Stevens, M. (2019). Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds. Communications Biology 2, 1–10.
| Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds.Crossref | GoogleScholarGoogle Scholar |
Higham, J. P., Maclarnon, A. M., Ross, C., Heistermann, M., and Semple, S. (2008). Baboon sexual swellings: information content of size and color. Hormones and Behavior 53, 452–462.
| Baboon sexual swellings: information content of size and color.Crossref | GoogleScholarGoogle Scholar | 18206889PubMed |
Jarman, P. J., Allen, L. R., Boschma, D. J., and Green, S. W. (2007). Scat contents of the spotted-tailed quoll Dasyurus maculatus in the New England gorges, north-eastern New South Wales. Australian Journal of Zoology 55, 63–72.
| Scat contents of the spotted-tailed quoll Dasyurus maculatus in the New England gorges, north-eastern New South Wales.Crossref | GoogleScholarGoogle Scholar |
Jones, M. E., Rose, R. K., and Burnett, S. (2001). Dasyurus maculatus. Mammalian Species 676, 1–9.
| Dasyurus maculatus.Crossref | GoogleScholarGoogle Scholar |
Long, K. and Nelson, J. (2010). ‘National Recovery Plan for the spotted-tailed quoll Dasyurus maculatus.’ Prepared by the Victorian Department of Sustainability and Environment. (Australian Government Department of the Environment: Canberra).
Lunney, D., Curtin, A., Ayers, D., Cogger, H. G., Dickman, C. R., Maitz, W., Law, B. and Fisher, P. (2000) The threatened and non-threatened native vertebrate fauna of New South Wales: status and ecological attributes. Environmental & Heritage Monograph Series No. 4. NSW National Parks and Wildlife Service, Sydney.
Majerus, M. E. N., and Mundy, N. I. (2003). Mammalian melanism: natural selection in black and white. Trends in Genetics 19, 585–588.
| Mammalian melanism: natural selection in black and white.Crossref | GoogleScholarGoogle Scholar |
Mansergh, I. (1984). The status, distribution and abundance of Dasyurus maculatus (tiger quoll) in Australia, with particular reference to Victoria. The Australian Zoologist 21, 109–122.
Moller, A. P., and Pomiankowski, A. (1993). Why have birds got multiple sexual ornaments?. Behavioral Ecology and Sociobiology 32, 167–176.
| Why have birds got multiple sexual ornaments?.Crossref | GoogleScholarGoogle Scholar |
Mort, R. L., Ross, R. J. H., Hainey, K. J., Harrison, O. J., Keighren, M. A., Landini, G., Baker, R. E., Painter, K. J., Jackson, I. J., and Yates, C. A. (2016). Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model. Nature Communications 7, 1–13.
| Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model.Crossref | GoogleScholarGoogle Scholar |
Nachman, M. W., Hoekstra, H. E., and D’agostino, S. L. (2003). The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences 100, 5268–5273.
| The genetic basis of adaptive melanism in pocket mice.Crossref | GoogleScholarGoogle Scholar |
Ortolani, A. (1999). Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society 67, 433–476.
| Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method.Crossref | GoogleScholarGoogle Scholar |
Phillips, C. J., and Wilson, N. (1965). A partially albino bandicoot from New Guinea. Journal of Mammalogy 46, 698–699.
| A partially albino bandicoot from New Guinea.Crossref | GoogleScholarGoogle Scholar | 5838231PubMed |
Protas, M. E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens, H., Jeffery, W. R., Zon, L. I., Borowsky, R., and Tabin, C. J. (2006). Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics 38, 107–111.
| Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.Crossref | GoogleScholarGoogle Scholar | 16341223PubMed |
Pérez-Puig, H., Heckel, G., and Meltzer, L. (2019). First leucistic bottlenose dolphin (Tursiops truncatus) sighting registered in the Gulf of California, Mexico. Aquatic Mammals 45, 507–512.
| First leucistic bottlenose dolphin (Tursiops truncatus) sighting registered in the Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |
Selz, O. M., Thommen, R., Pierotti, M. E. R., Anaya-Rojas, J. M., and Seehausen, O. (2016). Differences in male coloration are predicted by divergent sexual selection between populations of a cichlid fish. Proceedings of the Royal Society B: Biological Sciences 283, .
| 27147097PubMed |
Sherratt, T. N., and Beatty, C. D. (2003). The evolution of warning signals as reliable indicators of prey defense. American Naturalist 162, 377–389.
| The evolution of warning signals as reliable indicators of prey defense.Crossref | GoogleScholarGoogle Scholar |
Soma, M., and Garamszegi, L. Z. (2018). Evolution of patterned plumage as a sexual signal in estrildid finches. Behavioral Ecology 29, 676–685.
| Evolution of patterned plumage as a sexual signal in estrildid finches.Crossref | GoogleScholarGoogle Scholar |