Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Molecular characterisation of the signaling molecules TCRζ and ZAP-70 in the marsupial Macropus eugenii (tammar wallaby)

S. Flenady A C and L. J. Young B
+ Author Affiliations
- Author Affiliations

A Institute of Human and Social Science Research, Central Queensland University, Bruce Highway, Rockhampton, Qld 4702, Australia.

B Centre for Environmental Management, Central Queensland University, Bruce Highway, Rockhampton, Qld 4702, Australia.

C Corresponding author. Email: s.smith-flenady@cqu.edu.au

Australian Mammalogy 36(2) 137-145 https://doi.org/10.1071/AM13030
Submitted: 13 August 2013  Accepted: 14 February 2014   Published: 6 June 2014

Abstract

The debate about the state of the marsupial immune system has entered a new era with the recent publication of the tammar wallaby (Macropus eugenii) genome. The aim of this study was to investigate two important components of the T-cell signalling cascade in M. eugenii to determine whether there are any significant differences between the genome and the expressed gene sequences and to elucidate the putative structures. Molecular methods, predominantly RACE PCR and RT–PCR, using cDNA obtained from mRNA isolated from M. eugenii lymph node tissue, were used to determine the sequence of functional motifs in the TCRζ and ZAP-70 molecules. Structure prediction algorithms were used to determine their secondary and tertiary structures for comparison with the structures elucidated by X-ray crystallography in humans and other mammals. Differences between the genome and the expressed sequence were found in the ZAP-70 molecule. Homology modelling demonstrated that the predicted structure of the TCRζ molecule was different from those of other mammals while the structure of the ZAP-70 molecule was very similar. It is concluded that the T-cell signalling cascade in the adaptive immune system of marsupials shows similar features to that of other mammals.

Additional keywords: functional motifs, marsupial immunology, Monodelphis domestica.


References

Ahmed, Z., Beeton, C. A., Williams, M. A., Clements, D., Baldari, C. T., and Ladbury, J. E. (2005). Distinct spatial and temporal distribution of ZAP70 and Lck following stimulation of interferon and T-cell receptors. Journal of Molecular Biology 353, 1001–1010.
Distinct spatial and temporal distribution of ZAP70 and Lck following stimulation of interferon and T-cell receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKms7jJ&md5=637ff1e4f89cf5babb0f23321c7be48bCAS | 16219325PubMed |

Baniyash, M. (2004). TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response. Nature Reviews. Immunology 4, 675–687.
TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCmt7Y%3D&md5=9489de88379ba34269a982bf7a94dce4CAS | 15343367PubMed |

Bianchi, A., Mariani, S., Beggiato, E., Borrione, P., Peola, S., Boccadoro, M., Pileri, A., and Massaia, M. (1997). Distribution of T-cell signalling molecules in human myeloma. British Journal of Haematology 97, 815–820.
Distribution of T-cell signalling molecules in human myeloma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szmtVWmtg%3D%3D&md5=ba73bfb8fafd18426b255fcababbb2c7CAS | 9217182PubMed |

Borders, C. L., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., and Pett, V. B. (1994). A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science 3, 541–548.
A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslCnurk%3D&md5=8a90c5684b6f6b2576e274fd2fbf749bCAS | 8003972PubMed |

Brdicka, T., Kadlecek, T. A., Roose, J. P., Pastuszak, A. W., and Weiss, A. (2005). Intramolecular regulator switch in ZAP-70: analogy with receptor tyrosine kinases. Molecular and Cellular Biology 25, 4924–4933.
Intramolecular regulator switch in ZAP-70: analogy with receptor tyrosine kinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1OrtLg%3D&md5=0cf360f8f52ee84c6ce2b28e40f3b0fdCAS | 15923611PubMed |

Carter, A. M., and Mess, A. (2007). Evolution of the placenta in eutherian mammals. Placenta 28, 259–262.
| 1:CAS:528:DC%2BD2sXjvFGmsLk%3D&md5=5e4901dcbe36f182cf0bbb62e617bd33CAS | 16780944PubMed |

Chan, A. C., Iwashima, M., Turck, C. W., and Weiss, A. (1992). ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71, 649–662.
ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlCht7w%3D&md5=c0500c92ea8e4770d415553c3da937d0CAS | 1423621PubMed |

Di Bartolo, V., Mege, D., Germian, V., Pelosi, M., Dufour, E., Michel, F., Magistrelli, G., Isaacchi, A., and Acuto, O. (1999). Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling. The Journal of Biological Chemistry 274, 6285–6294.
Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1ersbw%3D&md5=832367621725705caaabd75d67a84b71CAS | 10037717PubMed |

Dinkel, H., Michael, S., Weatheritt, R. J., Davey, N. E., Van Roey, K., Altenberg, B., Toedt, G., Uyar, B., Seiler, M., Budd, A., Jödicke, L., Dammert, M. A., Schroeter, C., Hammer, M., Schmidt, T., Jehl, P., McGuigan, C., Dymecka, M., Chica, C., Luck, K., Via, A., Chatr-aryamontri, A., Haslam, N., Grebnev, G., Edwards, R. J., Steinmetz, M. O., Meiselbach, H., Diella, F., and Gibson, T. J. (2011). ELM – the database of eukaryotic linear motifs. Nucleic Acids Research 40, 1–10.

Eswar, N., and Sali, A. (2009). Protein structure modeling. In ‘From Molecules to Medicine, Structure of Biological Macromolecules and Its Relevance in Combating New Diseases and Bioterrorism’. (Eds J. L. Sussman and P. Spadon.) pp. 139–151. (Springer-Verlag: Dordrecht, The Netherlands.)

Frank, S. J., Niklinska, B. B., Orloff, D. G., Mercep, M., Ashwell, J. D., and Klausner, R. D. (1990). Structural mutations of the T cell receptor zeta chain and its role in T cell activation. Science 249, 174–177.
Structural mutations of the T cell receptor zeta chain and its role in T cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFegu7k%3D&md5=fb3e262f9dd5ff3d8658984723811908CAS | 2371564PubMed |

Jin, L., Pluskey, S., Petrella, E. C., Cantin, S. M., Gorga, J. C., Rynkiewicz, M., J., Pandey, P., Strickler, J. E., Babine, R. E., Weaver, D. T., and Seidl, K. J. (2004). The three-dimensional structure of the ZAP-70 kinase domain in complex with staurosporine. Journal of Biological Chemistry 279, 42 818–42 825.
| 1:CAS:528:DC%2BD2cXotVOgsbY%3D&md5=d13a8c5114a3bb1c5e27efc1273da2cfCAS |

Jurd, R. D. (1994). “Not proper mammals”: immunity in monotremes and marsupials. Journal of Comparative Immunology, Microbiology and Infectious Diseases 1, 41–52.

Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., and Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols 7, 1511–1522.
Template-based protein structure modeling using the RaptorX web server.Crossref | GoogleScholarGoogle Scholar | 22814390PubMed |

Koyasu, S., d’Adamio, L., Arulanandam, A. R., Abraham, S., Clayton, L. K., and Reinherz, E. L. (1992). T cell receptor complexes containing Fc epsilon RI g homodimers in lieu of CD3 z and CD3 h components: a novel isoform expressed on large granular lymphocytes. The Journal of Experimental Medicine 175, 203–209.
T cell receptor complexes containing Fc epsilon RI g homodimers in lieu of CD3 z and CD3 h components: a novel isoform expressed on large granular lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls12htg%3D%3D&md5=2d6a81783ed26cd435fb5581134b65baCAS | 1530959PubMed |

Letunic, I., Doerks, T., and Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource Nucleic Acids Research 40, D302–D305.
SMART 7: recent updates to the protein domain annotation resourceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hurzL&md5=e3115891dfb001d017c7b75058351d5fCAS | 22053084PubMed |

Lowenstein, E. J., Daly, R. J., Batzer, A. G., Li, W., Margolis, B., Lammers, R., Ullrich, A., Skolnick, D., Bar-Sagi, D., and Schlessinger, J. (1992). The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442.
The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1ajtbg%3D&md5=cefe0b551011fad56be86d89ea77d173CAS | 1322798PubMed |

Magnan, A., Di Bartolo, V., Mura, A.-M., Boyer, C., Richelme, M., Lin, Y.-L., Roure, A., Gillet, A., Arrieumerlou, C., Acuto, O., Malissen, B., and Malissen, M. (2001). T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase. The Journal of Experimental Medicine 194, 491–505.
T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1egu74%3D&md5=7a863769425145475259fd0aed795361CAS | 11514605PubMed |

McGuffin, L. J., Bryson, K., and Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405.
The PSIPRED protein structure prediction server.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFOksrw%3D&md5=6acd2364f73aa699616cc271d560eeeeCAS | 10869041PubMed |

Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Medenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.
Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVSrtrc%3D&md5=0392d80ff078cb0861ff9b5747ed5761CAS | 17603471PubMed |

Peter, M. E., Hall, C., Ruhlman, A., Sancho, J., and Terhorst, C. (1992). The T-cell receptor ζ chain contains a GTP/GP binding Site. The EMBO Journal 11, 933–935.
| 1:CAS:528:DyaK38XhvFahsbg%3D&md5=4cd18af1bc8815e1c108cd4a38544320CAS | 1547789PubMed |

Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785–786.
SignalP 4.0: discriminating signal peptides from transmembrane regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CrtrbL&md5=d992d7c5ee73e4d6e7fb7433e509a798CAS | 21959131PubMed |

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P. D., Pharo, E. A., Shaw, G., Wong, E. S., Lefèvre, C. M., Nicholas, K. R., Kuroki, Y., Wakefield, M. J., Kyall, R., Zenger, K. R., Wang, C., Ferguson-Smith, M., Nicholas, F.W., Hickford, D., Yu, H., Short, K. R., Siddle, H. V., Frankenberg, S. R., Chew, K., Menzies, B. R., Stringer, J. M., Suzuki, S., Hore, T. A., Delbridge, M. L., Mohammadi, A., Schneider, N. Y., Hu, Y., O’Hara, W., Al Nadaf, S., Wu, C., Feng, Z-P., Cocks, B. G., Wang, J., Flicek, P., Searle, S. M. J., Fairly, S., Beal, K., Herrero, J., Carone, S. M., Suzuki, Y., Sugano, S., Toyoda, A., Sakaki, Y., Kodno, S., Nishida, Y., Tatsumoto, S., Mandiou, I., Hsu, A., McColl, K. A., Lansdell, B., Weinstock, G., Kucek, E., McGrath, A., Wilson, P., Men, A., Hazar-Rethinam, M., Hall, A., Davis, J., Wood, D., Willliams, S., Sundaravadanam, Y., Muzny, D. M., Jhangiani, S. N., Lewis, L. T., Morgan, M. B., Okwuonu, G O., Ruiz, S. J., Sanatibanez, J., Nazareth, L., Cree, A., Fowler, G., Kovar, C. L., Dinh, H. H., Joshi, V., Jing, C., Lara, F., Thornton, R., Chen, L., Deng, J., Liu, W., Shen, J. Y., Song, X-Z., Edson, J., Troon, C., Thomas, D., Stephens, A., Yapa, L., Levchenko, T., Gibbs, R. A., Cooper, D. W., Speed, T. P., Fuhiyama, A., Graves, J. A. M., O’Neill, R. J., Pask, A. J., Forrest, S. M., and Worley, K. C. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology 12, R81.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar | 21854559PubMed |

Russel, D., Lakser, K., Webb, B., Vela’zquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., Peterson, B., and Sali, A. (2012). Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biology 10, e1001244.
Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaru78%3D&md5=b445b86a3d617c078b123b3b4ce9f506CAS | 22272186PubMed |

Samollow, P. B. (2008). The opossum genome: insights and opportunities from an alternative mammal Genome Research 18, 1199–1215.
The opossum genome: insights and opportunities from an alternative mammalCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFOmsLw%3D&md5=764c60adfc31daaa0e280e282e927cc2CAS | 18676819PubMed |

Stone, W. H., Bruun, D. A., Foster, E. B., Manis, G. S., Hoffman, E. S., Saphire, D. G., VandeBerg, J. L., and Infante, A. J. (1998). Absence of a significant mixed lymphocyte reaction in a marsupial (Monodelphis domestica). Journal of Laboratory Animal Science 48, 184–189.
| 1:STN:280:DyaK1M7ovFyrsw%3D%3D&md5=31c728057ea969e189eaff4382cd40dcCAS |

Stone, W. H., Bruun, D. A., Manis, G. S., Holste, S. B., Hoffman, E. S., Spong, K. D., and Malunas, T. L. (1996). The immunobiology of the marsupial, Monodelphis domestica. In ‘Modulators of Immune Responses; The Evolutionary Trail’. Breckenridge Series 2, Vol. 11, (Eds J. S. Stolen, T. C. Fletcher, C. J. Bayne, C. J. Secombes, J. T. Zelikoff.) pp. 149–165. (SOS Publications: Fairhaven, NJ.)

Stone, W. H., Manis, G. S., Hoffman, E. S., Saphire, D. G., Hubbard, G. B., and VandeBerg, J. L. (1997). Fate of allogeneic skin transplantations in a marsupial, Monodelphis domestica. Journal of Laboratory Animal Science 47, 283–287.
| 1:STN:280:DyaK2szosFKitQ%3D%3D&md5=1728063b3987da68a0c739cfa7797696CAS |

Tang, B., Myers, L. K., Rosloniec, E. F., Whittington, K. B., Kang, J. M., and Kang, A. H. (1998). Characterization of signal transduction through the TCR-z chain following T cell stimulation with analogue peptides of Type II collagen 260–267. Journal of Immunology (Baltimore, MD.: 1950) 160, 3135–3142.
| 1:CAS:528:DyaK1cXitFWnurs%3D&md5=a1b4adfe09def08fb2bd192401e425ceCAS |

Wang, H., Kadlecek, T. A., Au-Yeung, B. B., Goodfellow, H. E., Hsu, L.-Y., Freedman, T. S., and Weiss, A. (2010). ‘ZAP-70: An Essential Kinase in T-cell Signaling.’ (Cold Spring Harbour Perspectives in Biology.)

Wange, R. L., Malek, S. N., Desiderio, S., and Samelson, L. E. (1993). Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells. The Journal of Biological Chemistry 268, 19797–19801.
| 1:CAS:528:DyaK3sXltFGjsb0%3D&md5=900259a01362eabd706e4d73a4f75e82CAS | 8366117PubMed |

Wass, M. N., Kelley, L. A., and Sternberg, M. J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research 38, W469–W473.
3DLigandSite: predicting ligand-binding sites using similar structures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVSqtro%3D&md5=2e0be87fb62009ebdac4343931ccd459CAS | 20513649PubMed |

Weissman, A. M., Hou, D., Orloff, D. G., Modi, S. W., Seuanez, H., O’Brien, S. J., and Klausner, R. D. (1988). Molecular cloning and chromosomal localization of the human T-cell receptor ζ chain: distinction from the molecular CD3 complex. Proceedings of the National Academy of Sciences of the United States of America 85, 9709–9713.
Molecular cloning and chromosomal localization of the human T-cell receptor ζ chain: distinction from the molecular CD3 complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFWnuro%3D&md5=4ee86e4ac97de0856995b7b8b47424e6CAS | 2974162PubMed |

Wiest, D. L., Ashe, J. M., Howcroft, T. K., Lee, H. M., Kemper, D. M., Negishi, I., Singer, D. S., Singer, A., and Abe, R. (1997). A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development. Immunity 6, 663–671.
A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFCqsLg%3D&md5=216b978d10ec511045209ae6a40af181CAS | 9208839PubMed |

Yang, Y., Villain, P., Mustelin, T., and Couture, C. (2003). Critical role of Ser-520 phosphorylation for membrane recruitment and activation of the ZAP-70 tyrosine kinase in T cells. Molecular and Cellular Biology 23, 7667–7677.
Critical role of Ser-520 phosphorylation for membrane recruitment and activation of the ZAP-70 tyrosine kinase in T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFOgtrg%3D&md5=3ac3553ba996282684a9539ccbcb5845CAS | 14560012PubMed |

Young, L. J., Cross, M. L., Duckworth, J. A., Flenady, S., and Belov, K. (2012). Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula. Journal of Developmental and Comparative Immunology 36, 236–240.
Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOksb7L&md5=53caef9bd286c59ffa461d0d928b1368CAS |

Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P., and Samelson, L. E. (1998). LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92.
LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1entg%3D%3D&md5=835943fec3de3096bdc583a03dcb0ff6CAS | 9489702PubMed |

Zhang, H., Cordoba, S.-P., Dushek, O., and van der Merwe, P. A. (2011). Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulates signaling. Proceedings of the National Academy of Sciences of the United States of America 108, 19323–19328.
Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulates signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1eitLfK&md5=2bf9ecf641d4cc2faf299dcf53b3f1c2CAS | 22084078PubMed |