Multiple paternity in the swamp antechinus (Antechinus minimus)
M. G. Sale A B D , F. J. L. Kraaijeveld-Smit C and J. P. Y. Arnould AA School of Life and Environmental Sciences, Deakin University, Burwood, Vic. 3125, Australia.
B Coffey Environments, 126 Trennery Crescent, Abbotsford, Vic. 3067, Australia.
C Dutch Society for the Protection of Animals, Scheveningseweg 58, Postbus 85980, 2508 CR Den Haag, The Netherlands.
D Corresponding author. Email: michael.g.sale@gmail.com
Australian Mammalogy 35(2) 227-230 https://doi.org/10.1071/AM12039
Submitted: 31 July 2012 Accepted: 13 November 2012 Published: 1 March 2013
Abstract
Multiple paternity within litters or broods occurs across a variety of taxa. In the present study, paternity patterns in the swamp antechinus (Antechinus minimus), a small carnivorous marsupial, were investigated using genetic analyses. Microsatellite data confirmed that, of 10 litters sampled from two habitats, a minimum of eight litters were sired by more than one male. Mating with multiple males may enable female swamp antechinuses to increase offspring viability and to ensure fertilisation.
Additional keywords: behaviour, dasyurid, mammal, reproduction, sperm competition.
References
Baker, R. J., Makova, K. D., and Chesser, R. K. (1999). Microsatellites indicate a high frequency of multiple paternity in Apodemus (Rodentia). Molecular Ecology 8, 107–111.| Microsatellites indicate a high frequency of multiple paternity in Apodemus (Rodentia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVOguro%3D&md5=85ec5b085451a6e0b91507af356c6879CAS |
Banks, S. C., Finlayson, G. R., Lawson, S. J., Lindenmayer, D. B., Paetkau, D., Ward, S. J., and Taylor, A. C. (2005a). The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis. Biological Conservation 122, 581–597.
| The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis.Crossref | GoogleScholarGoogle Scholar |
Banks, S. C., Ward, S. J., Lindenmayer, D. B., Finlayson, G. R., Lawson, S. J., and Taylor, A. C. (2005b). The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis. Molecular Ecology 14, 1789–1801.
| The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3gsVWnug%3D%3D&md5=f8596e88edb3f7a003e5332e45640e36CAS |
Bryant, K. A. (2004). The mating system and reproduction in the honey possum, Tarsipes rostratus: a life-history and genetical perspective. Ph.D. Thesis, Murdoch University.
DeYoung, R. W., Demarais, S., Gonzales, R. A., Honeycutt, R. L., and Gee, K. L. (2002). Multiple paternity in white-tailed deer (Odocoileus virginianus) revealed by DNA microsatellites. Journal of Mammalogy 83, 884–892.
| Multiple paternity in white-tailed deer (Odocoileus virginianus) revealed by DNA microsatellites.Crossref | GoogleScholarGoogle Scholar |
Fisher, D. O., Double, M. C., Blomberg, S. P., Jennions, M. D., and Cockburn, A. (2006a). Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Nature 444, 89–92.
| Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGgsb7O&md5=0b852f47cec8f7daa3a43b2866b80b2eCAS |
Fisher, D. O., Double, M. C., and Moore, B. D. (2006b). Number of mates and timing of mating affect offspring growth in the small marsupial Antechinus agilis. Animal Behaviour 71, 289–297.
| Number of mates and timing of mating affect offspring growth in the small marsupial Antechinus agilis.Crossref | GoogleScholarGoogle Scholar |
Fuller, N. C. (2006). Microsatellite variation in the swamp antechinus (Antechinus minimus maritimus): an assessment of island and mainland populations in Victoria. B.Sc. (Honours) Thesis, Deakin University.
Glen, A. S., Cardoso, M. J., Dickman, C. R., and Firestore, K. B. (2009). Who’s your daddy? Paternity testing reveals promiscuity and multiple paternity in the carnivorous marsupial Dasyurus maculatus (Marsupialia: Dasyuridae). Biological Journal of the Linnean Society 96, 1–7.
| Who’s your daddy? Paternity testing reveals promiscuity and multiple paternity in the carnivorous marsupial Dasyurus maculatus (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Gomendio, M., Harcourt, A. H., and Roldan, E. R. S. (1998). Sperm competition in mammals. In ‘Sperm Competition and Sexual Selection’. (Eds T. R. Birkhead and A. P. Møller.) pp. 667–756. (Academic Press: San Diego.)
Harcourt, A. H., Purvis, A., and Liles, L. (1995). Sperm competition – mating system, net breeding-season, affects testes size of primates. Functional Ecology 9, 468–476.
| Sperm competition – mating system, net breeding-season, affects testes size of primates.Crossref | GoogleScholarGoogle Scholar |
Haynie, M. L., Van den Bussche, R. A., Hoogland, J. L., and Gilbert, D. A. (2003). Parentage, multiple paternity, and breeding success in Gunnison’s and Utah prairie dogs. Journal of Mammalogy 84, 1244–1253.
| Parentage, multiple paternity, and breeding success in Gunnison’s and Utah prairie dogs.Crossref | GoogleScholarGoogle Scholar |
Holleley, C. E., Dickman, C. R., Crowther, M. S., and Oldroyd, B. P. (2006). Size breeds success: multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Molecular Ecology 15, 3439–3448.
| Size breeds success: multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Shu7rK&md5=2765b7f13618cfa41908a032c8d9bd70CAS |
Jennions, M. D., and Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. Biological Reviews of the Cambridge Philosophical Society 75, 21–64.
| Why do females mate multiply? A review of the genetic benefits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3gsFSltw%3D%3D&md5=bba519e413c45ca4570eace685fd4ce0CAS |
Jones, A. G. (2005). Gerud 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Molecular Ecology Notes 5, 708–711.
| Gerud 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhurrF&md5=602f83384a5ec0e6e71c06bb1ff02428CAS |
Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
| Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar |
Kenagy, G. J., and Trombulak, S. C. (1986). Size and function of mammalian testes in relation to body size. Journal of Mammalogy 67, 1–22.
| Size and function of mammalian testes in relation to body size.Crossref | GoogleScholarGoogle Scholar |
Kraaijeveld-Smit, F. J. L., Ward, S. J., and Temple-Smith, P. D. (2002). Multiple paternity in a field population of a small carnivorous marsupial, the agile antechinus, Antechinus agilis. Behavioral Ecology and Sociobiology 52, 84–91.
| Multiple paternity in a field population of a small carnivorous marsupial, the agile antechinus, Antechinus agilis.Crossref | GoogleScholarGoogle Scholar |
Menkhorst, P. (1995). ‘Mammals of Victoria. Distribution, Ecology and Conservation.’ (Oxford University Press: Melbourne.)
Millis, A. L., Taggart, D. A., Bradley, A. J., Phelan, J., and Temple-Smith, P. D. (1999). Reproductive biology of the brush-tailed phascogale, Phascogale tapoatafa (Marsupialia: Dasyuridae). Journal of Zoology 248, 325–335.
| Reproductive biology of the brush-tailed phascogale, Phascogale tapoatafa (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Mitani, J. C., Gros-Louis, J., and Richards, A. F (1996). Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. American Naturalist 147, 966–980.
| Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates.Crossref | GoogleScholarGoogle Scholar |
Moller, A. P. (1989). Ejaculate quality, testes size and sperm production in mammals. Functional Ecology 3, 91–96.
| Ejaculate quality, testes size and sperm production in mammals.Crossref | GoogleScholarGoogle Scholar |
Paetkau, D. (1999). Microsatellites obtained using strand extension: an enrichment protocol. BioTechniques 26, 690–697.
| 1:CAS:528:DyaK1MXislGmtrc%3D&md5=175ae79e854c25d020ce39d196b98fc9CAS |
Parrott, M. L., Ward, S. J., and Taggart, D. A. (2005). Multiple paternity and communal maternal care in the feathertail glider (Acrobates pygmaeus). Australian Journal of Zoology 53, 79–85.
| Multiple paternity and communal maternal care in the feathertail glider (Acrobates pygmaeus).Crossref | GoogleScholarGoogle Scholar |
Reynolds, J. D. (1996). Animal breeding systems. Trends in Ecology & Evolution 11, 68–72.
| Animal breeding systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFerug%3D%3D&md5=b7c5aea8db06ec596b32c607102d676dCAS |
Sale, M. G. (2008). Comparative ecology of island and mainland swamp antechinus populations. Ph.D. Thesis, Deakin University.
Sale, M. G., Kraaijeveld-Smit, F. J. L., and Arnould, J. P. Y. (2009). Natal dispersal and social organization of the swamp antechinus (Antechinus minimus) in a high density island population. Canadian Journal of Zoology 87, 262–272.
| Natal dispersal and social organization of the swamp antechinus (Antechinus minimus) in a high density island population.Crossref | GoogleScholarGoogle Scholar |
Shimmin, G. A., Taggart, D. A., and Temple-Smith, P. D. (2000). Sperm competition and genetic diversity in the agile antechinus (Dasyuridae: Antechinus agilis). Journal of Zoology 252, 343–350.
| Sperm competition and genetic diversity in the agile antechinus (Dasyuridae: Antechinus agilis).Crossref | GoogleScholarGoogle Scholar |
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1993). Female multiple mating behavior in the common shrew as a strategy to reduce inbreeding. Proceedings of the Royal Society of London. Series B, Biological Sciences 254, 173–179.
| Female multiple mating behavior in the common shrew as a strategy to reduce inbreeding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ltFektQ%3D%3D&md5=b463cc52a776250f2de648365cf70fb5CAS |
Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
| Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=8d1015bee9e415d1735bfe9e910c6c5eCAS |
Taggart, D. A., Shimmin, G. A., Dickman, C. R., and Breed, W. G. (2003). Reproductive biology of carnivorous marsupials: Clues to the likelihood of sperm competition. In ‘Predators with Pouches’. (Eds M. Jones, C. Dickman and M. Archer.) pp. 358–375. (CSIRO Publishing: Melbourne.)
Tregenza, T., and Wedell, N. (2002). Polyandrous females avoid costs of inbreeding. Nature 415, 71–73.
| Polyandrous females avoid costs of inbreeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Omuw%3D%3D&md5=285a27660cbd109507fc8ced1a7b4bd7CAS |
Wilson, B. A. (1986). Reproduction in the female dasyurid Antechinus minimus (Marsupialia, Dasyuridae). Australian Journal of Zoology 34, 189–197.
| Reproduction in the female dasyurid Antechinus minimus (Marsupialia, Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Wilson, B. A., and Bourne, A. R. (1984). Reproduction in the male dasyurid Antechinus minimus maritimus (Marsupialia, Dasyuridae). Australian Journal of Zoology 32, 311–318.
| Reproduction in the male dasyurid Antechinus minimus maritimus (Marsupialia, Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Yasui, Y. (2001). Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable. Ecological Research 16, 605–616.
| Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable.Crossref | GoogleScholarGoogle Scholar |
Zeh, J. A., and Zeh, D. W. (1996). The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proceedings of the Royal Society of London. Series B, Biological Sciences 263, 1711–1717.
| The evolution of polyandry I: intragenomic conflict and genetic incompatibility.Crossref | GoogleScholarGoogle Scholar |