Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Tree kangaroo molecular systematics based on partial cytochrome b sequences: are Matschie’s tree kangaroo (Dendrolagus matschiei) and Goodfellow’s tree kangaroo (D. goodfellowi buergersi) sister taxa?

Thomas J. McGreevy Jr A C , Lisa Dabek A B and Thomas P. Husband A
+ Author Affiliations
- Author Affiliations

A Department of Natural Resources Science, Coastal Institute, University of Rhode Island, Kingston, RI 02881, USA.

B Tree Kangaroo Conservation Program, Department of Conservation, Woodland Park Zoo, Seattle, WA 98103, USA.

C Corresponding author. Email: tjmcg@mail.uri.edu

Australian Mammalogy 34(1) 18-28 https://doi.org/10.1071/AM10017
Submitted: 12 May 2010  Accepted: 15 February 2011   Published: 7 October 2011

Abstract

New Guinea tree kangaroos (Dendrolagus spp.) are unique arboreal macropodid marsupials mainly listed as critically endangered or endangered. The molecular systematics of Dendrolagus has not been fully resolved and is critical for the accurate identification of species and their evolutionary relationships. Matschie’s tree kangaroo (D. matschiei) and Goodfellow’s tree kangaroo (D. goodfellowi buergersi) share numerous morphological, physiological, and behavioural traits. We analysed the partial mitochondrial DNA cytochrome b gene for D. matschiei (n = 67), D. g. buergersi (n = 8), D. goodfellowi unidentified ssp. (n = 8), golden-mantled tree kangaroo (D. g. pulcherrimus; n = 1), and two additional New Guinea Dendrolagus taxa to determine whether D. matschiei and D. g. buergersi are sister taxa. D. matschiei and D. g. buergersi were not placed as sister taxa in our phylogenetic analyses; however, we were unable to analyse a known sample from a D. g. goodfellowi. We found initial genetic evidence that D. matschiei and the Lowland tree kangaroo (D. spadix) are sister taxa – they may have diverged after the formation of the Huon Peninsula of Papua New Guinea. Our results also support the elevation of D. g. pulcherrimus to a full species. An improved understanding of Dendrolagus molecular systematics will contribute substantially to their conservation.

Additional keywords: Huon Peninsula, mitochondrial DNA barcode, Papua New Guinea, phylogenetic species concept, population aggregation analysis.


References

Abers, G. A., and McCaffrey, R. (1994). Active arc-continent collision: earthquakes, gravity anomalies, and fault kinematics in the Huon–Finisterre collision zone, Papua New Guinea. Tectonics 13, 227–245.
Active arc-continent collision: earthquakes, gravity anomalies, and fault kinematics in the Huon–Finisterre collision zone, Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Amato, G., Egan, M. G., Schaller, G. B., Baker, R. H., Rosenbaum, H. C., Robichaud, W. G., and DeSalle, R. (1999). Rediscovery of Roosevelt’s barking deer (Muntiacus rooseveltorum). Journal of Mammalogy 80, 639–643.
Rediscovery of Roosevelt’s barking deer (Muntiacus rooseveltorum).Crossref | GoogleScholarGoogle Scholar |

Bowyer, J. C., Newell, G. R., Metcalfe, C. J., and Eldridge, M. B. D. (2003). Tree-kangaroos Dendrolagus in Australia: are D. lumholtzi and D. bennettianus sister taxa? Australian Zoologist 32, 207–213.

Bradley, R. D., and Baker, R. J. (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82, 960–973.
A test of the genetic species concept: cytochrome-b sequences and mammals.Crossref | GoogleScholarGoogle Scholar |

Bremer, K. (1994). Branch support and tree stability. Cladistics 10, 295–304.
Branch support and tree stability.Crossref | GoogleScholarGoogle Scholar |

Cracraft, J. (1989). Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In ‘Speciation and its Consequences’. (Eds D. Otte and J. A. Endler.) pp. 28–59. (Sinauer Associates, Inc.: Sunderland, MA.)

Davis, J. I., and Nixon, K. C. (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology 41, 421–435.

Dawson, L. (2004). A new pliocene tree kangaroo species (Marsupialia, Macropodinae) from the Chinchilla Local Fauna, southeastern Queensland. Alcheringa 28, 267–273.
A new pliocene tree kangaroo species (Marsupialia, Macropodinae) from the Chinchilla Local Fauna, southeastern Queensland.Crossref | GoogleScholarGoogle Scholar |

DeSalle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology 20, 1545–1547.
Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff.Crossref | GoogleScholarGoogle Scholar |

DeSalle, R., Egan, M. G., and Sidall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=b329dfe33892ea3505caf932b51fd59fCAS |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Flannery, T. F. (1995). ‘Mammals of New Guinea.’ 2nd edn. (Cornell University Press: New York.)

Flannery, T. F., and Archer, M. (1984). The macropodoids (Marsupialia) of the early Pliocene Bow Local Fauna, central eastern New South Wales. Australian Zoologist 21, 357–383.

Flannery, T. F., Rich, T. H., Turnbull, W. D., and Lundelius, E. L., (1992). The Macropodoidea of the early Pliocene Hamilton local fauna from Victoria, Australia. Fieldiana Geology. New Series 25, 1–37.

Flannery, T. F., Boeadi, , and Szalay, A. L. (1995). A new tree-kangaroo (Dendrolagus: Marsupialia) from Irian Jaya, Indonesia, with notes on ethnography and the evolution of tree-kangaroos. Mammalia 59, 65–84.
A new tree-kangaroo (Dendrolagus: Marsupialia) from Irian Jaya, Indonesia, with notes on ethnography and the evolution of tree-kangaroos.Crossref | GoogleScholarGoogle Scholar |

Flannery, T. F., Martin, R., and Szalay, A. (1996). ‘Tree Kangaroos: a Curious Natural History.’ (Reed Books Australia: Melbourne.)

Goldstein, P. Z., DeSalle, R., Amato, G., and Vogler, A. P. (2000). Conservation genetics at the species boundary. Conservation Biology 14, 120–131.
Conservation genetics at the species boundary.Crossref | GoogleScholarGoogle Scholar |

Groves, C. P. (1982). The systematics of tree kangaroos (Dendrolagus; Marsupalia, Macropodidae). Australian Mammalogist 5, 157–186.

Groves, C. P. (2005). Order Diprotodontia. In ‘Mammal Species of the World’. (Eds D. E. Wilson and D. M. Reeder.) pp. 43–70. (Johns Hopkins University Press: Baltimore.)

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=c200ec4de8cded67ae8d44aeeeb43352CAS |

Hedges, S. B. (1992). The number of replications needed for accurate estimation of the bootstrap p value in phylogenetic studies. Molecular Biology and Evolution 9, 366–369.
| 1:STN:280:DyaK383hvF2ltw%3D%3D&md5=800c65919399ac7d444ac77935f6acbfCAS |

Helgen, K. M. (2007). A taxonomic and geographic overview of the mammals of Papua. In ‘The Ecology of Papua’. (Eds A. J. Marshall and B. M. Beehler.) pp. 689–749. (Periplus Editions: Singapore.)

Hovius, N., Stark, C. P., Tutton, M. A., and Abbott, L. D. (1998). Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. Geology 26, 1071–1074.
Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England) 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=ba36edb73f448e215d19b507b1baa7d9CAS |

Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32, 128–144.
Evolution of the cytochrome b gene of mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVejtLk%3D&md5=b15535b2c7aa8c99d3e5ca66729e93a7CAS |

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=e58bd33c54e0310e1de21ff7731713e7CAS |

Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., and O’Brien, S. J. (1994). Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of Molecular Evolution 39, 174–190.
| 1:CAS:528:DyaK2cXlsFShtrs%3D&md5=985fe453fd6ba2a7d1c27d42b28b9e8eCAS |

Martin, R. (2005). ‘Tree-kangaroos of Australia and New Guinea.’ (CSIRO Publishing: Melbourne.)

McGreevy, T. J.,, Dabek, L., Gomez-Chiarri, M., and Husband, T. P. (2009). Genetic diversity in captive and wild Matschie’s tree kangaroo (Dendrolagus matschiei) from Huon Peninsula, Papua New Guinea, based on mtDNA control region sequences. Zoo Biology 28, 183–196.
Genetic diversity in captive and wild Matschie’s tree kangaroo (Dendrolagus matschiei) from Huon Peninsula, Papua New Guinea, based on mtDNA control region sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVChtrk%3D&md5=88bf638d632308d12ee5cb1d64f40339CAS |

McGreevy, T. J.,, Dabek, L., and Husband, T. P. (2010). A multiplex PCR assay to distinguish among three sympatric marsupial taxa from Huon Peninsula, Papua New Guinea, using the mitochondrial control region gene. Molecular Ecology Resources 10, 397–400.
A multiplex PCR assay to distinguish among three sympatric marsupial taxa from Huon Peninsula, Papua New Guinea, using the mitochondrial control region gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFCksbc%3D&md5=1b22361191c17c4706533d86c12d4c67CAS |

Moritz, C., Patton, J. L., Schneider, C. J., and Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31, 533–563.
Diversification of rainforest faunas: an integrated molecular approach.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Baysian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Baysian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=67712c0ce44918b2d9e6d6f2b052cd19CAS |

Prideaux, G. J., and Warburton, N. M. (2008). A new Pleistocene tree-kangaroo (Diprotodontia: Macropodidae) from the Nullarbor Plain of south-central Australia. Journal of Vertebrate Paleontology 28, 463–478.
A new Pleistocene tree-kangaroo (Diprotodontia: Macropodidae) from the Nullarbor Plain of south-central Australia.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=4e2271ce331daa746d135ec5fd4d2906CAS |

Ronquist, F., Huelsenbeck, J. P., and van der Mark, P. (2005). MRBAYES 3.1 manual. Available at http://mrbayes.scs.fsu.edu/mb3.1_manual.pdf [accessed 4 March 2010].

Rothschild, W., and Dollman, G. (1936). The genus Dendrolagus. Transactions of the Zoological Society XXI, 477–548.

Rubinoff, D. (2006a). Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology 20, 1026–1033.
Utility of mitochondrial DNA barcodes in species conservation.Crossref | GoogleScholarGoogle Scholar |

Rubinoff, D. (2006b). DNA barcoding evolves into the familiar. Conservation Biology 20, 1548–1549.
DNA barcoding evolves into the familiar.Crossref | GoogleScholarGoogle Scholar |

Rubinoff, D., Cameron, S., and Will, K. (2006a). Are plant DNA barcodes a search for the Holy Grail? Trends in Ecology & Evolution 21, 1–2.
Are plant DNA barcodes a search for the Holy Grail?Crossref | GoogleScholarGoogle Scholar |

Rubinoff, D., Cameron, S., and Will, K. (2006b). A genomic perspective on the shortcomings of mitochondrial DNA for “Barcoding” identification. The Journal of Heredity 97, 581–594.
A genomic perspective on the shortcomings of mitochondrial DNA for “Barcoding” identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCru7jL&md5=9127bbe6c4aee5c46b0edb19e7d7557cCAS |

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=1897ef4d967b4dd32141d60bb15abfd1CAS |

Sorenson, M. D., and Franzosa, E. A. (2007). TreeRot. Version 3. Boston University, Boston, MA. Available at http://people.bu.edu/msoren/TreeRot.html.

Swofford, D. L. (2000). ‘PAUP*. Phylogenetic analysis using parsimony (*and other methods).’ Version 4 (beta 8). (Sinauer Associates Inc.: Sunderland, MA.)

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=97f8cc7d147c8472c8d824200c44af8dCAS |

Tedford, R. H., Well, R. T., and Barghoorn, S. F. (1992). Tirari Formation and contained faunas, Pliocene of the Lake Eyre Basin, South Australia. The Beagle. Records of the Northern Territory Museum of Arts and Sciences 9, 173–193.

Thompson, J., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=1db21c41d2a843f84679039c514cfb23CAS |

Wenzel, J. W. (2002). Phylogenetic analysis: the basic method. In ‘Techniques in Molecular Systematics and Evolution’. (Eds R. DeSalle, G. Giribet and W. Wheeler.) pp. 4–30. (Birkhauser Verlag: Basel.)