Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Distribution of aromatase activity in brain and peripheral tissues of male sheep: effect of nutrition

T. P. Sharma A C , D. Blache A , C. E. Roselli B and G. B. Martin A D
+ Author Affiliations
- Author Affiliations

A School of Animal Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, WA 6009, Australia.

B Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97239, USA.

C Present address: Watford Veterinary Clinic, Watford, ON NOM2SO, Canada.

D To whom correspondence should be addressed. email: gmartin@agric.uwa.edu.au

Reproduction, Fertility and Development 16(7) 709-715 https://doi.org/10.1071/RD04018
Submitted: 11 March 2004  Accepted: 8 October 2004   Published: 9 December 2004

Abstract

Conversion of testosterone to oestradiol plays a major role in the feedback inhibition of gonadotrophin secretion in male sheep but little is known of the distribution or control of aromatase activity among central and peripheral tissues. Changes in activity at those sites may mediate alterations in the effectiveness of negative feedback following, for example, a change in nutrition. Using a tritiated-water assay, we quantified aromatase in several tissues in mature male sheep, assessed their contribution to oestradiol production, and tested whether activity at each site was affected by a nutritional treatment that stimulates gonadotrophin secretion. Among the brain tissues, the preoptic area had the highest concentration of activity, followed by the hypothalamus, amygdala and cortex. Among the peripheral tissues, liver and testis had the highest activity and, due to their mass, they are the major sources of circulating oestradiol. Pituitary, muscle, kidney and adipose tissues had very low aromatase levels. The nutritional stimulus increased activity in testis but not in liver or brain. We conclude that changes in aromatase activity do not mediate the effects of nutrition on steroid feedback, but aromatisation in testis, liver and brain is important in the endocrine regulation of reproduction in the mature ram.


References

Balthazart, J. , and Ball, G. F. (1998). New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci. 21, 243–249.
Crossref | GoogleScholarGoogle Scholar | PubMed | Roselli C. E., and Resko J. A. (1991). In vitro assay of aromatase activity in the central nervous system. In ‘Neuroendocrine Research Methods’. (Ed. B. Greenstein.) pp. 937–951. (Harwood Academic Publishers: Reading, UK.)

Roselli, C. E. , and Resko, J. A. (1998). Distribution and regulation of aromatase activity in ram hypothalamus and amygdala. Brain Res. 811, 105–110.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roselli, C. E. , Horton, L. E. , and Resko, J. A. (1985). Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117, 2471–2477.
PubMed |

Roselli, C. E. , Stadelman, H. , Horton, L. E. , and Resko, J. A. (1987). Regulation of androgen metabolism and luteinizing hormone-releasing hormone content in discrete hypothalamic and limbic areas of male rhesus macaques. Endocrinology 120, 97–106.
PubMed |

Sanford, L. M. , and Robaire, B. (1990). Interaction of season and estradiol in the regulation of gonadotropin secretion in the adult ram. Can. J. Physiol. Pharmacol. 68, 150–156.
PubMed |

Schanbacher, B. D. (1984). Regulation of luteinizing hormone secretion in male sheep by endogenous estrogen. Endocrinology 115, 944–950.
PubMed |

Scott, C. J. , Kuehl, D. E. , Ferreira, S. A. , and Jackson, G. L. (1997). Hypothalamic sites of action for testosterone, dihydrotestosterone, and estrogen in the regulation of luteinizing hormone secretion in male sheep. Endocrinology 138, 3686–3694.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Setchell, B. P. , Locatelli, A. , Perreau, C. , Pisselet, C. , Fontaine, I. , Kuntz, C. , Saumande, J. , Fontaine, J. , and Hochereau-de Reviers, M.-T. (1991). The form and function of the Leydig cells in hypophysectomized rams treated with pituitary extract when spermatogenesis is disrupted by heating the testes. J. Endocrinol. 131, 101–112.
PubMed |

Sharma, T. P. , Blache, D. , Blackberry, M. A. , and Martin, G. B. (1999). Role of peripheral and central aromatization in the control of gonadotrophin secretion in the male sheep. Reprod. Fertil. Dev. 11, 293–302.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tilbrook, A. J. , De Kretser, D. M. , Cummins, J. T. , and Clarke, I. J. (1991). The negative feedback effects of testicular steroids are predominantly at the hypothalamus in the ram. Endocrinology 129, 3080–3092.
PubMed |

Tjondronegoro, S. , Martin, G. B. , Sutherland, S. R. , and Boukhliq, R. (1996). Interactions between nutrition, testosterone and inhibin in the control of gonadotrophin secretion in mature rams. Reprod. Fertil. Dev. 8, 855–862.
PubMed |

Venkatraman, J. T. , Rao, M. , Fink, C. S. , and Awad, A. B. (1996). Effect of dietary lipids on activities of hepatic steroid metabolizing enzymes (5α-reductase and aromatase) and composition of microsomes. Nutr. Res. 16, 1749–1759.
Crossref | GoogleScholarGoogle Scholar |

Webb, R. , Campbell, B. K. , Garverick, H. A. , Gong, J. G. , Gutierrez, C. G. , and Armstrong, D. G. (1999). Molecular mechanisms regulating follicular recruitment and selection. J. Reprod. Fertil. 54, S33–S48.


Weber, K. S. , Jacobson, N. A. , Setchell, K. D. , and Lephart, E. D. (1999). Brain aromatase and 5α-reductase, regulatory behaviors and testosterone levels in adult rats on phytoestrogen diets. Proc. Soc. Exp. Biol. Med. 221, 131–135.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zumpe, D. , Bonsall, R. W. , and Michael, R. P. (1993). Effect of non-steroidal aromatase inhibitor, fadrozole, on the sexual behavior of male cynomolgus monkeys (Macaca fascicularis). Horm. Behav. 27, 200–215.
Crossref | GoogleScholarGoogle Scholar | PubMed |