Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms

M. Jordana Rivero A , Nicolas Lopez-Villalobos B , Alex Evans C , Alexandre Berndt D , Andrew Cartmill E , Andrew L. Neal A , Ann McLaren F , Anne Farruggia G , Catherine Mignolet H , Dave Chadwick I , David Styles I , Davy McCracken F , Dennis Busch E , Graeme B. Martin J , Hannah Fleming A , Helen Sheridan C , James Gibbons I , Lutz Merbold K , Mark Eisler L , Nicola Lambe F , Pablo Rovira M , Paul Harris A , Paul Murphy C , Philip E. Vercoe J , Prysor Williams I , Rui Machado D , Taro Takahashi A L , Thomas Puech H , Tommy Boland C , Walter Ayala M and Michael R. F. Lee A L N
+ Author Affiliations
- Author Affiliations

A Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK.

B School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand.

C School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V1W8, Ireland.

D Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, São Carlos, São Paulo 13560-970, Brazil.

E School of Agriculture, University of Wisconsin–Platteville, 1 University Plaza, Platteville, WI 53818, USA.

F Hill and Mountain Research Centre, SRUC: Scotland’s Rural College, Kirkton Farm, Crianlarich FK20 8RU, UK.

G Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE) – Département sciences pour l’action, les transitions, les territoires (ACT), Unité Expérimentale 0057 Saint Laurent de la Prée, 545 route du Bois Maché, 17450 Saint Laurent de la Prée, France.

H Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE) – Département sciences pour l’action, les transitions, les territoires (ACT), Unité de Recherche 0055 Aster-Mirecourt, 662 Avenue Louis Buffet, 88500 Mirecourt, France.

I School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.

J The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.

K Mazingira Centre, International Livestock Research Institute, PO Box 30709, 00100 Nairobi, Kenya.

L Bristol Veterinary School, University of Bristol, Langford, Somerset BS40 5DU, UK.

M Instituto Nacional de Investigación Agropecuaria, INIA, Ruta 8 km 281, Treinta y Tres 33000, Uruguay.

N Corresponding author. Email: michael.lee@rothamsted.ac.uk

Reproduction, Fertility and Development 33(2) 1-19 https://doi.org/10.1071/RD20205
Published: 8 January 2021

Journal Compilation © IETS 2021 Open Access CC BY-NC-ND

Abstract

Ruminant livestock are raised under diverse cultural and environmental production systems around the globe. Ruminant livestock can play a critical role in food security by supplying high-quality, nutrient-dense food with little or no competition for arable land while simultaneously improving soil health through vital returns of organic matter. However, in the context of climate change and limited land resources, the role of ruminant-based systems is uncertain because of their reputed low efficiency of feed conversion (kilogram of feed required per kilogram of product) and the production of methane as a by-product of enteric fermentation. A growing human population will demand more animal protein, which will put greater pressure on the Earth’s planetary boundaries and contribute further to climate change. Therefore, livestock production globally faces the dual challenges of mitigating emissions and adapting to a changing climate. This requires research-led animal and plant breeding and feeding strategies to optimise ruminant systems. This study collated information from a global network of research farms reflecting a variety of ruminant production systems in diverse regions of the globe. Using this information, key changes in the genetic and nutritional approaches relevant to each system were drawn that, if implemented, would help shape more sustainable future ruminant livestock systems.

Keywords: breeding goals, feeding strategies, genetic resources, global warming, grazing ruminants, sustainable intensification.


References

Abberton, M. T., and Marshall, A. H. (2005). Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135.
Progress in breeding perennial clovers for temperate agriculture.Crossref | GoogleScholarGoogle Scholar |

Abberton, M. T., Macduff, J. H., Marshall, A. H., and Humphreys, M. W. (2008). The genetic improvement of forage grasses and legumes to enhance adaptation of grasslands to climate change. Prepared for FAO, May 2008. Available at http://www.fao.org/3/a-ai779e.pdf [verified 19 August 2020].

Alford, A. R., Hegarty, R. S., Parnell, P. F., Cacho, O. J., Herd, R. M., and Griffith, G. R. (2006). The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Aust. J. Exp. Agric. 46, 813–820.
The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry.Crossref | GoogleScholarGoogle Scholar |

Arango, J. A., and Van Vleck, L. D. (2002). Size of beef cows: early ideas, new developments. Genet. Mol. Res. 1, 51–63.
Size of beef cows: early ideas, new developments.Crossref | GoogleScholarGoogle Scholar | 14963813PubMed |

Arthur, P. F., Archer, J. A., and Herd, R. M. (2004). Feed intake and efficiency in beef cattle: overview of recent Australian research and challenges for the future. Aust. J. Exp. Agric. 44, 361–369.
Feed intake and efficiency in beef cattle: overview of recent Australian research and challenges for the future.Crossref | GoogleScholarGoogle Scholar |

Basarab, J. A., Beauchemin, K. A., Baron, V. S., Ominski, K. H., Guan, L. L., Miller, S. P., and Crowley, J. J. (2013). Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal 7, 303–315.
Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.Crossref | GoogleScholarGoogle Scholar | 23739472PubMed |

Bell, M., Pryce, J., and Wilson, P. (2017). A comparison of the economic value for enteric methane emissions with other biological traits associated with dairy cows. Am. Res. J. Agric. 2016, 1–17.

Berghof, T. V. L., Poppe, M., and Mulder, H. A. (2019). Opportunities to improve resilience in animal breeding programs. Front. Genet. 9, 692.
Opportunities to improve resilience in animal breeding programs.Crossref | GoogleScholarGoogle Scholar |

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L. G., Huhtanen, P., Tremblay, G. F., Bélanger, G., and Cai, Y. (2018). Silage review: unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101, 4001–4019.
Silage review: unique challenges of silages made in hot and cold regions.Crossref | GoogleScholarGoogle Scholar | 29685274PubMed |

Bernardi, A. C. D. C., Esteves, S. N., Pezzopane, J. R. M., Alves, T. C., Berndt, A., Pedroso, A. F., Rodrigues, P. H. M., Oliveira, P. P. A., Sudeste, E. P., and Usp, V. N. P. F. (2018). Soil carbon stocks under integrated crop–livestock–forest system in the Brazilian Atlantic Forest region. In ‘XXI World Congress of Soil Science’, 12–17 August, Rio de Janeiro, Brazil. (Eds L. Souza da Silva, L. H. Cunha dos Anjos, D. J. Reinert, H. Cantarella, C. C. Muggler, R. B. A. Fernandes, I. Rodrigues de Assis and F. A. de Oliveira Camargo.) p. 483. (Sociedade Brasileira de Ciência do Solo: Viçosa.)

Berndt, A., Lemes, A. P., Romero, L. A., Alves, T. C., Pedroso, A. M., Pedroso, A. D. F., and Oliveira, P. P. A. (2014). Methane emission intensities by Holstein and Holstein × Jersey crossbreed lactating cows in two Brazilian grazing systems. J. Anim. Sci. 2, 275.

Berry, D. P., Garcia, J. F., and Garrick, D. J. (2016). Development and implementation of genomic predictions in beef cattle. Anim. Front. 6, 32–38.
Development and implementation of genomic predictions in beef cattle.Crossref | GoogleScholarGoogle Scholar |

Bradford, H. L., Fragomeni, B. O., Bertrand, J. K., Lourenco, D. A. L., and Misztal, I. (2016). Genetic evaluations for growth heat tolerance in angus cattle. J. Anim. Sci. 94, 4143–4150.
Genetic evaluations for growth heat tolerance in angus cattle.Crossref | GoogleScholarGoogle Scholar | 27898850PubMed |

Bullock, J. M., Dhanjal-Adams, K. L., Milne, A., Oliver, T. H., Todman, L. C., Whitmore, A. P., and Pywell, R. F. (2017). Resilience and food security: rethinking an ecological concept. J. Ecol. 105, 880–884.
Resilience and food security: rethinking an ecological concept.Crossref | GoogleScholarGoogle Scholar |

Capstaff, N. M., and Miller, A. J. (2018). Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 9, 535.
Improving the yield and nutritional quality of forage crops.Crossref | GoogleScholarGoogle Scholar | 29740468PubMed |

Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., and Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil Tillage Res. 188, 53–58.
Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept.Crossref | GoogleScholarGoogle Scholar |

Chungchunlam, S. M. S., Moughan, P. J., Garrick, D. P., and Drewnowski, A. (2020). Animal-sourced foods are required for minimum-cost nutritionally adequate food patterns for the United States. Nat. Food 1, 376–381.
Animal-sourced foods are required for minimum-cost nutritionally adequate food patterns for the United States.Crossref | GoogleScholarGoogle Scholar |

Coquil, X., Blouet, A., Fiorelli, J. L., Bazard, C., and Trommenschlager, J. M. (2009). Conception de systèmes laitiers en agriculture biologique Une entrée agronomique. Prod. Anim. 22, 221–234.

Cottle, D. J., and Van Der Werf, J. H. J. (2017). Optimising the proportion of selection candidates measured for feed intake for a beef cattle breeding objective that includes methane emissions. J. Anim. Sci. 95, 1030–1041.
Optimising the proportion of selection candidates measured for feed intake for a beef cattle breeding objective that includes methane emissions.Crossref | GoogleScholarGoogle Scholar | 28380522PubMed |

De S. Oliveira, M. C., Nicodemo, M. L. F., Gusmão, M. R., Pezzopane, J. R. M., Bilhassi, T. B., Santana, C. H., Gonçalves, T. C., Rabelo, M. D., and Giglioti, R. (2017). Differential Haematobia irritans infestation levels in beef cattle raised in silvopastoral and conventional pasture systems. Vet. Parasitol. 246, 96–99.
Differential Haematobia irritans infestation levels in beef cattle raised in silvopastoral and conventional pasture systems.Crossref | GoogleScholarGoogle Scholar | 28969788PubMed |

Dunshea, F. R., Gonzalez-Rivas, P. A., Hung, A. T., DiGiacomo, K., Chauhan, S. S., Leury, B. J., Celi, P. P., Ponnampalam, E. N., and Cottrell, J. J. (2017). Nutritional strategies to alleviate heat stress in sheep. In ‘Sheep Production Adapting to Climate Change’. (Eds V. Sejian, R. Bhatta, J. Gaughan, P. K. Malik, S. M. K. Naqvi, and R. Lal.) pp. 371–388. (Springer Singapore: Singapore.)

Durant, D., Martel, G., Chataigner, C., Farruggia, A., Kernéïs, E., Prieur, M., Roux, P., and Tricheur, A. (2020). Comment évoluer vers davantage d’autonomie au sein des systèmes de polyculture-élevage?: l’expérience d’une ferme expérimentale en marais. Fourrages (Versailles) 241, 21–34.

Eisler, M. C., Lee, M. R. F., Tarlton, J. F., Martin, G. B., Beddington, J., Dungait, J. A., Greathead, H., Liu, J., Mathew, S., Miller, H., Misselbrook, T., Murray, P., Vinod, V. K., Van Saun, R., and Winter, M. (2014). Steps to sustainable livestock. Nature 507, 32–34.
Steps to sustainable livestock.Crossref | GoogleScholarGoogle Scholar | 24605375PubMed |

Elayadeth-Meethal, M., Thazhathu Veettil, A., Maloney, S. K., Hawkins, N., Misselbrook, T. H., Sejian, V., Rivero, M. J., and Lee, M. R. F. (2018). Size does matter: parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle. Ecol. Evol. 8, 10608–10620.
Size does matter: parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle.Crossref | GoogleScholarGoogle Scholar | 30464832PubMed |

FAO (2006). , .
| 28639725PubMed |

Gaughan, J. B., Sejian, V., Mader, T. L., and Dunshea, F. R. (2019). Adaptation strategies: ruminants. Anim. Front. 9, 47–53.
Adaptation strategies: ruminants.Crossref | GoogleScholarGoogle Scholar | 32002239PubMed |

Gerber, P., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. (2013). Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. http://www.fao.org/3/a-i3437e.pdf [verified 19 August 2020].

Groen, A. F. (1989). Cattle breeding goals and production circumstances (Fokdoel in de rundveefokkerij en produktie-omstandigheden). Ph.D. Thesis, Wageningen Agricultural University, Netherlands. Available at http://edepot.wur.nl/134033 [verified 26 March 2020].

Harrigan, J. (2017). Once-a-day No 1 at No 1. Dairy Exporter. Available at https://www.jersey.org.nz/wp-content/uploads/2018/05/OAD-dairyexporter-article.pdf [verified 29 June 2020].

Harris  D. L.Stewart  T. S.Arboleda  C. R. (1984 ). Animal breeding programs: a systematic approach to their design. Agric. Res. Serv. 114.

HartmanGroup (2012). Clicks & cravings. The impact of social technology on food culture. http://store.hartman-group.com/content/social-media-2012-overview.pdf [verified 29 June 2020].

Hayes, B. J., Lewin, H. A., and Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 29, 206–214.
The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation.Crossref | GoogleScholarGoogle Scholar | 23261029PubMed |

Hegarty, R. S., and McEwan, J. C. (2010). Genetic opportunities to reduce enteric methane emissions from ruminant livestock. In ‘Proceedings of the Ninth World Congress on Genetics Applied to Livestock Production’ 29 June 2020. pp. 181–186. (German Society for Animal Science: Leipzig, Germany.)

Hegarty, R. S., Alcock, D., Robinson, D. L., Goopy, J. P., and Vercoe, P. E. (2010). Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises. Anim. Prod. Sci. 50, 1026–1033.
Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises.Crossref | GoogleScholarGoogle Scholar |

Holt-Giménez, E., Shattuck, A., Altieri, M., Herren, H., and Gliessman, S. (2012). We already grow enough food for 10 billion people… and still can’t end hunger. J. Sustain. Agric. 36, 595–598.
We already grow enough food for 10 billion people… and still can’t end hunger.Crossref | GoogleScholarGoogle Scholar |

Howden, S. M., Crimp, S. J., and Stokes, C. J. (2008). Climate change and Australian livestock systems: impacts, research and policy issues. Aust. J. Exp. Agric. 48, 780–788.
Climate change and Australian livestock systems: impacts, research and policy issues.Crossref | GoogleScholarGoogle Scholar |

International Livestock Research Institute (ILRI) (2019). Kapiti Research Station: a livestock, environmental and agricultural research station in southeastern Kenya. Available at https://hdl.handle.net/10568/107222 [verified 22 June 2020].

Intergovernmental Panel on Climate Change (IPCC) (2013). Summary for policymakers. In ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley.) pp. 3–32. (Cambridge University Press: Cambridge, UK and New York, NY, USA.)

Ishangulyyev, R., Kim, S., and Lee, S. H. (2019). Understanding food loss and waste-why are we losing and wasting food? Foods 8, 297.
Understanding food loss and waste-why are we losing and wasting food?Crossref | GoogleScholarGoogle Scholar |

Johanson, J. M., and Berger, P. J. (2003). Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. J. Dairy Sci. 86, 3745–3755.
Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 14672206PubMed |

Knaus, W. (2009). Dairy cows trapped between performance demands and adaptability. J. Sci. Food Agric. 89, 1107–1114.
Dairy cows trapped between performance demands and adaptability.Crossref | GoogleScholarGoogle Scholar |

Lattanzi, F. A. (2010). C3/C4 grasslands and climate change. In ‘Grassland in a Changing World. Proceedings of the 23rd General Meeting of the European Grassland Federation’, 29 August–2 September 2010, Kiel, Germany. (Eds H. Schnyder, J. Isselstein, F. Taube, K. Auerswald, J. Schellberg, M. Wachendorf, A. Herrmann, M. Gierus, N. Wrage and A. Hopkins.) pp. 3–13. (Mecke Druck und Verlag: Duderstadt.)

Lee, M. A., Davis, A. P., Chagunda, M. G. G., and Manning, P. (2017). Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 14, 1403–1417.
Forage quality declines with rising temperatures, with implications for livestock production and methane emissions.Crossref | GoogleScholarGoogle Scholar |

Marino, R., Atzori, A. S., D’Andrea, M., Iovane, G., Trabalza-Marinucci, M., and Rinaldi, L. (2016). Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin. Res. 135, 50–59.
Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming.Crossref | GoogleScholarGoogle Scholar |

Marsden, K. A., Holmberg, J. A., Jones, D. L., and Chadwick, D. R. (2018). Sheep urine patch N2O emissions are lower from extensively-managed than intensively-managed grasslands. Agric. Ecosyst. Environ. 265, 264–274.
Sheep urine patch N2O emissions are lower from extensively-managed than intensively-managed grasslands.Crossref | GoogleScholarGoogle Scholar |

McAuliffe, G. A., Takahashi, T., and Lee, M. R. F. (2018a). Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food Energy Secur. 7, e00143.
Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products.Crossref | GoogleScholarGoogle Scholar | 30197782PubMed |

McAuliffe, G. A., Takahashi, T., Orr, R. J., Harris, P., and Lee, M. R. F. (2018b). Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems. J. Clean. Prod. 171, 1672–1680.
Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems.Crossref | GoogleScholarGoogle Scholar | 29333000PubMed |

McAuliffe, G. A., Takahashi, T., and Lee, M. R. F. (2020). Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 25, 208–221.
Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems.Crossref | GoogleScholarGoogle Scholar | 32063684PubMed |

McCullough, C. (2016). EU dairy industry milk crisis impacting feed production. Feed Strategy. https://www.feedstrategy.com/dairy-cattle-nutrition/eu-dairy-industry-milk-crisis-impacting-feed-production/ [verified 15 April 2020].

Méo-Filho, P., Berndt, A., Marcondes, C. R., Pedroso, A. F., Sakamoto, L. S., Boas, D. F. V., Rodrigues, P. H. M., Rivero, M. J., and Bueno, I. C. S. (2020). Methane emissions, performance and carcass characteristics of different lines of beef steers reared on pasture and finished in feedlot. Animals (Basel) 10, 303.
Methane emissions, performance and carcass characteristics of different lines of beef steers reared on pasture and finished in feedlot.Crossref | GoogleScholarGoogle Scholar |

Mercadante, M. E. Z., De Melo Caliman, A. P., Canesin, R. C., Bonilha, S. F. M., Berndt, A., Frighetto, R. T. S., Magnani, E., and Branco, R. H. (2015). Relationship between residual feed intake and enteric methane emission in Nellore cattle. Rev. Bras. Zootec. 44, 255–262.
Relationship between residual feed intake and enteric methane emission in Nellore cattle.Crossref | GoogleScholarGoogle Scholar |

Miglior, F., Muir, B. L., and Van Doormaal, B. J. (2005). Selection indices in Holstein cattle of various countries. J. Dairy Sci. 88, 1255–1263.
Selection indices in Holstein cattle of various countries.Crossref | GoogleScholarGoogle Scholar | 15738259PubMed |

Miglior, F., Fleming, A., Malchiodi, F., Brito, L. F., Martin, P., and Baes, C. F. (2017). A 100-year review: identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 100, 10251–10271.
A 100-year review: identification and genetic selection of economically important traits in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 29153164PubMed |

Morgan, E. R., and Wall, R. (2009). Climate change and parasitic disease: farmer mitigation? Trends Parasitol. 25, 308–313.
Climate change and parasitic disease: farmer mitigation?Crossref | GoogleScholarGoogle Scholar | 19540163PubMed |

Morgan-Davies, J., Morgan-Davies, C., Pollock, M. L., Holland, J. P., and Waterhouse, A. (2014). Characterisation of extensive beef cattle systems: disparities between opinions, practice and policy. Land Use Policy 38, 707–718.
Characterisation of extensive beef cattle systems: disparities between opinions, practice and policy.Crossref | GoogleScholarGoogle Scholar |

Morris, C. A., Baker, R. L., Hickey, S. M., Johnson, D. L., Cullen, N. G., and Wilson, J. A. (1993). Evidence of genotype by environment interaction for reproductive and maternal traits in beef cattle. Anim. Prod. 56, 69–83.

Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., and Gerber, P. (2017). Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 14, 1–8.
Livestock: on our plates or eating at our table? A new analysis of the feed/food debate.Crossref | GoogleScholarGoogle Scholar |

Navarrete-Molina, C., Meza-Herrera, C. A., Herrera-Machuca, M. A., Lopez-Villalobos, N., Lopez-Santos, A., and Veliz-Deras, F. G. (2019). To beef or not to beef: unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region. J. Clean. Prod. 231, 1027–1035.
To beef or not to beef: unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region.Crossref | GoogleScholarGoogle Scholar |

Nguyen, T. T. T., Bowman, P. J., Haile-Mariam, M., Pryce, J. E., and Hayes, B. J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci. 99, 2849–2862.
Genomic selection for tolerance to heat stress in Australian dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Oliveira, M. C. S., Alencar, M. M., Giglioti, R., Beraldo, M. C. D., Aníbal, F. F., Correia, R. O., Boschini, L., Chagas, A. C. S., Bilhassi, T. B., and Oliveira, H. N. (2013). Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Vet. Parasitol. 197, 168–175.
Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil.Crossref | GoogleScholarGoogle Scholar |

Orr, R. J., Murray, P. J., Eyles, C. J., Blackwell, M. S. A., Cardenas, L. M., Collins, A. L., Dungait, J. A. J., Goulding, K. W. T., Griffith, B. A., Gurr, S. J., Harris, P., Hawkins, J. M. B., Misselbrook, T. H., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K. N., Whitmore, A. P., Wu, L., and Lee, M. R. F. (2016). The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. Eur. J. Soil Sci. 67, 374–385.
The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics.Crossref | GoogleScholarGoogle Scholar | 27867310PubMed |

Parsons, C. (2018). Organic milk producers search for ways to remain profitable. Organic Farmer. Available at http://organicfarmermag.com/2018/06/organic-milk-producers-search-for-ways-to-remain-profitable/ [verified 15 April 2020].

Peter, C., Bruford, M., Perez, T., Dalamitra, S., Hewitt, G., and Erhardt, G. (2007). Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 38, 37–44.
Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds.Crossref | GoogleScholarGoogle Scholar | 17257186PubMed |

Provenza, F. D. (2008). What does it mean to be locally adapted and who cares anyway? J. Anim. Sci. 86, E271–E284.
What does it mean to be locally adapted and who cares anyway?Crossref | GoogleScholarGoogle Scholar | 17965332PubMed |

Pulley, S., and Collins, A. L. (2019). Field-based determination of controls on runoff and fine sediment generation from lowland grazing livestock fields. J. Environ. Manage. 249, 109365.
Field-based determination of controls on runoff and fine sediment generation from lowland grazing livestock fields.Crossref | GoogleScholarGoogle Scholar | 31442908PubMed |

Ranganathan, J., Waite, R., Searchinger, T., and Hanson, C. (2018). How to sustainably feed 10 billion people by 2050, in 21 charts. (World Resources Institute.) Available at https://www.wri.org/blog/2018/12/how-sustainably-feed-10-billion-people-2050-21-charts [verified 10 April 2020].

Rose, G., Mulder, H. A., Thompson, A. N., Van Der Werf, J. H. J., and Van Arendonk, J. A. M. (2015). Breeding objectives for sheep should be customised depending on variation in pasture growth across years. Animal 9, 1268–1277.
Breeding objectives for sheep should be customised depending on variation in pasture growth across years.Crossref | GoogleScholarGoogle Scholar | 25857317PubMed |

Rovira, P., Ayala, W., Terra, J., García-Préchac, F., Harris, P., Lee, M. R. F., and Rivero, M. J. (2020). The ‘Palo a Pique’ long-term research platform: first 25 years of a crop–livestock experiment in Uruguay. Agronomy (Basel) 10, 441.
The ‘Palo a Pique’ long-term research platform: first 25 years of a crop–livestock experiment in Uruguay.Crossref | GoogleScholarGoogle Scholar |

Soteriades, A. D., Foskolos, A., Styles, D., and Gibbons, J. M. (2019). Diversification not specialization reduces global and local environmental burdens from livestock production. Environ. Int. 132, 104837.
Diversification not specialization reduces global and local environmental burdens from livestock production.Crossref | GoogleScholarGoogle Scholar | 31450105PubMed |

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., and Sörlin, S. (2015). Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855.
Planetary boundaries: guiding human development on a changing planet.Crossref | GoogleScholarGoogle Scholar | 25592418PubMed |

Stuntebeck, T. D., Komiskey, M. J., Peppler, M. C., Owens, D. W., and Frame, D. R. (2011). Precipitation–runoff relations and water-quality characteristics at edge-of-field stations, discovery farms and pioneer farm, Wisconsin, 2003–08. (USGS.) Available at https://pubs.usgs.gov/sir/2011/5008/pdf/sir2011-5008_web.pdf [verified 26 April 2020].

Styles, D., Gonzalez-Mejia, A., Moorby, J., Foskolos, A., and Gibbons, J. (2018). Climate mitigation by dairy intensification depends on intensive use of spared grassland. Glob. Chang. Biol. 24, 681–693.
Climate mitigation by dairy intensification depends on intensive use of spared grassland.Crossref | GoogleScholarGoogle Scholar | 28940511PubMed |

Teague, W. R., Apfelbaum, S., Lal, R., Kreuter, U. P., Rowntree, J., Davies, C. A., Conser, R., Rasmussen, M., Hatfeld, J., Wang, T., Wang, F., and Byck, P. (2016). The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 71, 156–164.
The role of ruminants in reducing agriculture’s carbon footprint in North America.Crossref | GoogleScholarGoogle Scholar |

Van Zanten, H. H. E., Herrero, M., Van Hal, O., Röös, E., Muller, A., Garnett, T., Gerber, P. J., Schader, C., and De Boer, I. J. M. (2018). Defining a land boundary for sustainable livestock consumption. Glob. Chang. Biol. 24, 4185–4194.
Defining a land boundary for sustainable livestock consumption.Crossref | GoogleScholarGoogle Scholar |

Vellinga, T. V., and de Vries, M. (2018). Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems. Agric. Syst. 162, 136–144.
Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems.Crossref | GoogleScholarGoogle Scholar |

Whetstone, T. (2019). Spoiled milk: saturated market sends East Tennessee dairy farmers scrambling. Knox News. Available at https://eu.knoxnews.com/story/news/local/2018/03/13/milk-dairy-tennessee-farms-dean-foods/416818002/ [verified 20 August 2020].

Wilkinson, J. M., and Lee, M. R. F. (2018). Review: use of human-edible animal feeds by ruminant livestock. Animal 12, 1735–1743.
Review: use of human-edible animal feeds by ruminant livestock.Crossref | GoogleScholarGoogle Scholar | 28893333PubMed |

Wilkinson, J. M., Lee, M. R. F., Rivero, M. J., and Chamberlain, A. T. (2020). Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 75, 1–17.
Some challenges and opportunities for grazing dairy cows on temperate pastures.Crossref | GoogleScholarGoogle Scholar | 32109974PubMed |

Zhao, Z., Wang, M., Liu, S., Palmer, D., Shaw, R., Karlsson, J., Vercoe, P. E., Martin, G. B., and Greeff, J. (2019). Heritabilities of IgA and IgE activities against Teladorsagia and Trichostrongylus L3 larval antigens correlated with traits for faecal worm egg count, health and productivity in Merino sheep. Anim. Prod. Sci. 59, 1792–1802.
Heritabilities of IgA and IgE activities against Teladorsagia and Trichostrongylus L3 larval antigens correlated with traits for faecal worm egg count, health and productivity in Merino sheep.Crossref | GoogleScholarGoogle Scholar |

Zuazo, V. H. D., Pleguezuelo, C., and Rodríguez, R. (2003). Soil-erosion and runoff prevention by plant covers: a review. In ‘Sustainable Agriculture’. (Eds E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique and C. Alberola.) pp. 407–418. (Springer: Dordrecht.)