Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Primordial germ cell expression of SSEA1 and DDX4 (VASA) in female Trichosurus vulpecula (Marsupialia) reveals conserved and unique molecular patterns during marsupial germ cell development

Melanie K. Laird https://orcid.org/0000-0002-0733-3065 A B and Timothy A. Hore A
+ Author Affiliations
- Author Affiliations

A Department of Anatomy, University of Otago, Dunedin, Aotearoa 9016, New Zealand.

B Corresponding author. Email: melanie.laird@otago.ac.nz

Reproduction, Fertility and Development - https://doi.org/10.1071/RD20203
Submitted: 10 August 2020  Accepted: 9 December 2020   Published online: 29 January 2021

Abstract

Development of primordial germ cells (PGCs: precursors to adult gametes) is a key process in vertebrate sexual differentiation. Marsupials are ideal to investigate this phenomenon because much of PGC migration and development unusually occurs postnatally in pouch young. However, investigation of the molecular dynamics underpinning PGC development is restricted to one marsupial model species: the tammar wallaby (Macropus eugenii). Given the reproductive diversity among clades, marsupial PGCs likely exhibit diversity in molecular patterns that could help uncover their developmental dynamics. Here we characterise PGC marker expression (SSEA1 and DDX4) in developing ovaries of the brushtail possum, Trichosurus vulpecula. Female germ cells expressed DDX4 from 6 days postpartum (dpp) and almost all germ cells expressed DDX4 by meiosis (40 dpp), consistent with M. eugenii and eutherian mammals. In contrast, PGCs and oogonia expressed SSEA1 from 12 dpp, throughout proliferation and until entry into meiosis (40–63 dpp). SSEA1 expression was temporally distinct from that of M. eugenii, in which SSEA1 expression persists only until 14 dpp, indicating differential expression between marsupial species at equivalent stages of germ cell development. Hence, the molecular characteristics of M. eugenii germ cells cannot be assumed for all marsupials, as at least one key molecule exhibits species-specific expression.

Graphical Abstract Image

Keywords: marsupials, ovaries, primordial germ cells, immunofluorescence.


References

Alcorn, G. T., and Robinson, E. S. (1983). Germ cell development in female pouch young of the tammar wallaby (Macropus eugenii). J. Reprod. Fertil. 67, 319–325.
Germ cell development in female pouch young of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 6834329PubMed |

Anderson, R. A., Fulton, N., Cowan, G., Coutts, S., and Saunders, P. T. K. (2007). Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev. Biol. 7, 136.
Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis.Crossref | GoogleScholarGoogle Scholar | 18088417PubMed |

Byskov, A. G., and Høyer, P. E. (1994). Embryology of mammalian gonads and ducts. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill). Vol. 1, 2nd edn. (Raven Press: NY.)

Chung, J. W. (2010). Molecular pathways regulating gonadal development in the marsupial, Macropus eugenii. PhD thesis, University of Melbourne.

Chung, J. W., Pask, A. J., and Renfree, M. B. (2012). Seminiferous cord formation is regulated by hedgehog signalling in the marsupial. Biol. Reprod. 86, 80.
Seminiferous cord formation is regulated by hedgehog signalling in the marsupial.Crossref | GoogleScholarGoogle Scholar | 22133695PubMed |

Crawley, M. (1973). A live-trapping of Australian brush-tailed possums, Trichosurus vulpecula (Kerr), in the Orongorongo Valley, Wellington, New Zealand. Aust. J. Zool. 21, 75–90.
A live-trapping of Australian brush-tailed possums, Trichosurus vulpecula (Kerr), in the Orongorongo Valley, Wellington, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Cui, S., Nanayakkara, K., and Selwood, L. (2009). A marsupial, Trichosurus vulpecula, DDX4/VASA gene (TvDDX4) of the DEAD box protein family: molecular conservation and germline expression. Cytogenet. Genome Res. 126, 348–358.
A marsupial, Trichosurus vulpecula, DDX4/VASA gene (TvDDX4) of the DEAD box protein family: molecular conservation and germline expression.Crossref | GoogleScholarGoogle Scholar | 20016130PubMed |

D’Costa, S., and Petitte, J. N. (1999). Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo. Int. J. Dev. Biol. 43, 349–356.
| 10470652PubMed |

Eckery, D. C., Lawrence, S., Juengel, J. L., Greenwood, P., McNatty, K. P., and Fidler, A. E. (2002). Gene expression of the tyrosine kinase receptor c-kit during ovarian development in the brushtail possum (Trichosurus vulpecula). Biol. Reprod. 66, 346–353.
Gene expression of the tyrosine kinase receptor c-kit during ovarian development in the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 11804947PubMed |

Encinas, G., Zogbi, C., and Stumpp, T. (2012). Detection of four germ cell markers in rats during testis morphogenesis: Differences and similarities with mice. Cells Tissues Organs 195, 443–455.
Detection of four germ cell markers in rats during testis morphogenesis: Differences and similarities with mice.Crossref | GoogleScholarGoogle Scholar | 21893932PubMed |

Fletcher, T., and Selwood, L. (2000). Possum reproduction and development. In ‘The Brushtail Possum: Biology, Impact and Management of an Introduced Marsupial’. (Ed. T. L. Montague.) pp. 164–174. (Manaaki Whenua Press: Lincoln, New Zealand.)

Fox, N., Damjanov, I., Martinez-Hernandez, A., Knowles, B. B., and Solter, D. (1981). Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Dev. Biol. 83, 391–398.
Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues.Crossref | GoogleScholarGoogle Scholar | 6113181PubMed |

Freyer, C., Zeller, U., and Renfree, M. B. (2003). The marsupial placenta: A phylogenetic analysis. J. Exp. Zool. A Comp. Exp. Biol. 299, 59–77.
The marsupial placenta: A phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 12950035PubMed |

Gomperts, M., Garcia-Castro, M., Wylie, C., and Heasman, J. (1994). Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120, 135–141.
| 8119122PubMed |

Graves, J. A. M., and Renfree, M. B. (2013). Marsupials in the age of genomics. Annu. Rev. Genomics Hum. Genet. 14, 393–420.
Marsupials in the age of genomics.Crossref | GoogleScholarGoogle Scholar |

Hansen, V. L., Faber, L. S., Salehpoor, A. A., and Miller, R. D. (2017). A pronounced pro-inflammatory response at parturition is an ancient feature in marsupials. Proc. Biol. Sci. 284, 20171694.
A pronounced pro-inflammatory response at parturition is an ancient feature in marsupials.Crossref | GoogleScholarGoogle Scholar | 29070722PubMed |

Heeren, A. M., van Iperen, L., Klootwijk, D. B., de Melo Bernardo, A., Roost, M. S., Gomes, , Fernandes, M. M., Louwe, L. A., Hilders, C. G., Helmerhorst, F. M., van der Westerlaken, L. A. J., and Chuva de Sousa Lopes, S. M. (2015). Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev. Biol. 15, 4.
Development of the follicular basement membrane during human gametogenesis and early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 25605128PubMed |

Heeren, A. M., He, N., de Souza, A. F., Goercharn-Ramlal, A., van Iperen, L., Roost, M. S., Gomes Fernandes, M. M., van der Westerlaken, L. A., and Chuva de Sousa Lopes, S. M. (2016). On the development of extragonadal and gonadal human germ cells. Biol. Open 5, 185–194.
On the development of extragonadal and gonadal human germ cells.Crossref | GoogleScholarGoogle Scholar | 26834021PubMed |

Hickford, D., Frankenberg, S., and Renfree, M. B. (2010). The tammar wallaby, Macropus eugenii: a model kangaroo for the study of developmental and reproductive biology. In ‘Emerging Model Organisms: A Laboratory Manual’ (Vol. 2). pp. 449–494. (Cold Spring Harbor Laboratory Press: NY.)

Hickford, D. E., Frankenberg, S., Pask, A. J., Shaw, G., and Renfree, M. B. (2011). DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes. Biol. Reprod. 85, 733–743.
DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar | 21653890PubMed |

Hickford, D. E., Wong, S. F. L., Frankenberg, S. R., Shaw, G., Yu, H., Chew, K. Y., and Renfree, M. B. (2017). Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice. Biol. Reprod. 97, 217–229.
Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice.Crossref | GoogleScholarGoogle Scholar | 29044428PubMed |

Kerr, C. L., Hill, C. M., Blumenthal, P. D., and Gearhart, J. D. (2008). Expression of pluripotent stem cell markers in the human fetal ovary. Hum. Reprod. 23, 589–599.
Expression of pluripotent stem cell markers in the human fetal ovary.Crossref | GoogleScholarGoogle Scholar | 18203707PubMed |

Laird, M. K., McShea, H., Murphy, C. R., McAllan, B. M., Shaw, G., Renfree, M. B., and Thompson, M. B. (2018). Non-invasive placentation in the marsupials Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae) involves redistribution of uterine Desmoglein-2. Mol. Reprod. Dev. 85, 72–82.
Non-invasive placentation in the marsupials Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae) involves redistribution of uterine Desmoglein-2.Crossref | GoogleScholarGoogle Scholar | 29243855PubMed |

Leitch, H. G., Tang, W. W. C., and Surani, M. A. (2013). Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187.
Primordial germ-cell development and epigenetic reprogramming in mammals.Crossref | GoogleScholarGoogle Scholar | 23587241PubMed |

Liu, S., Liu, H., Tang, S., Pan, Y., Ji, K., Ning, H., Wang, S., Qi, Z., and Li, L. (2004). Characterization of stage-specific antigen-1 expression during early stages of human embryogenesis. Oncol. Rep. 12, 1251–1256.
| 15547746PubMed |

Lyne, A. G., and Verhagen, A. M. W. (1957). Growth of the marsupial Trichosurus vulpecula and a comparison with some higher mammals. Growth 21, 167–195.
| 13490833PubMed |

Maitland, P., and Ullmann, S. L. (1993). Gonadal development in the opossum Monodelphis domestica: the rete ovarii does not contribute to the steroidogenic tissues. J. Anat. 183, 43–56.
| 8270475PubMed |

McLaren, A. (2003). Primordial germ cells in the mouse. Dev. Biol. 262, 1–15.
Primordial germ cells in the mouse.Crossref | GoogleScholarGoogle Scholar | 14512014PubMed |

Nieuwkoop, P. D., and Sutasurya, L. A. (1979). The migration of the primordial germ cells. In ‘Primordial Germ Cells in the Chordates’. pp. 113–127. (Cambridge University Press: London.)

Pask, A. J., and Renfree, M. B. (2010). Molecular regulation of marsupial reproduction and development. In ‘Marsupial Genetics and Genomics’. (Eds J. E. Deakin, P. D. Waters, J. A. Marshall-Graves). pp. 285–316. (Springer: New York).

Pilton, P. E., and Sharman, G. B. (1962). Reproduction in the marsupial Trichosurus vulpecula. J. Endocrinol. 25, 119–136.
Reproduction in the marsupial Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 14037337PubMed |

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Renfree, M. B. (2010). Marsupials: placental mammals with a difference. Placenta 31, S21–S26.
Marsupials: placental mammals with a difference.Crossref | GoogleScholarGoogle Scholar | 20079531PubMed |

Renfree, M. B., and Shaw, G. (2001). Germ cells, gonads and sex reversal in marsupials. Int. J. Dev. Biol. 45, 557–567.
| 11417899PubMed |

Renfree, M. B., Coveney, D., and Shaw, G. (2001). The influence of estrogen on the developing male marsupial. Reprod. Fertil. Dev. 13, 231–240.
The influence of estrogen on the developing male marsupial.Crossref | GoogleScholarGoogle Scholar | 11800162PubMed |

Suzuki, S., Shaw, G., and Renfree, M. B. (2013). Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby. Epigenetics Chromatin 6, 14–21.
Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby.Crossref | GoogleScholarGoogle Scholar | 23732002PubMed |

Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M., and Noce, T. (2000). Expression and intracellular localization of mouse Vasa homologue protein during germ cell development. Mech. Dev. 93, 139–149.
Expression and intracellular localization of mouse Vasa homologue protein during germ cell development.Crossref | GoogleScholarGoogle Scholar | 10781947PubMed |

Tyndale-Biscoe, C. H. (1955). Observations on the reproduction and ecology of the brush-tailed possum, Trichosurus vulpecula Kerr (Marsupialia), New Zealand. Aust. J. Zool. 3, 162–184.
Observations on the reproduction and ecology of the brush-tailed possum, Trichosurus vulpecula Kerr (Marsupialia), New Zealand.Crossref | GoogleScholarGoogle Scholar |

Tyndale-Biscoe, C. H. (2005). ‘Life of Marsupials’. (CSIRO Publishing: Clayton, Vic.)

Ullmann, S. L. (1981). Observations on the primordial germ cells of bandicoots (Peramelidae, Marsupialia). J. Anat. 132, 581–595.
| 7298499PubMed |

Ullmann, S. L. (1996). Development of the ovary in the brushtail possum Trichosurus vulpecula (Marsupialia). J. Anat. 189, 651–665.
| 8982841PubMed |

Ullmann, S. L., Shaw, G., Alcorn, G. T., and Renfree, M. B. (1997). Migration of primordial germ cells to the developing gonadal ridges in the tammar wallaby Macropus eugenii. J. Reprod. Fertil. 110, 135–143.
Migration of primordial germ cells to the developing gonadal ridges in the tammar wallaby Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 9227367PubMed |

Wickham, H. (2016). ‘ggplot2: Elegant graphics for data analysis’. (Springer-Verlag: New York.)