Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Association of a region of bovine chromosome 1 (BTA1) with age at puberty in Angus bulls

María E. Fernández A , Alberto Prando B , Andrés Rogberg-Muñoz A , Pilar Peral-García A , Andrés Baldo B , Guillermo Giovambattista A C and Juan P. Lirón A
+ Author Affiliations
- Author Affiliations

A Instituto de Genética Veterinaria (IGEVET), CCT La Plata – CONICET – Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata B1900AVW, CC 296, Argentina.

B Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata B1900AVW, CC 296, Argentina.

C Corresponding author. Email: ggiovam@fcv.unlp.edu.ar

Reproduction, Fertility and Development 28(10) 1618-1621 https://doi.org/10.1071/RD14511
Submitted: 23 December 2014  Accepted: 10 March 2015   Published: 8 May 2015

Abstract

Age at puberty is an important component of reproductive performance in cattle, so it is important to identify genes that contribute to the regulation of the onset of puberty and polymorphisms that explain differences between bulls. In a previous study, we found putative associations between age at puberty in Angus bulls and single-nucleotide polymorphisms (SNPs) in Chromosomes 1 and X. In the present work we aimed to confirm these findings in a larger sample of Angus bulls (n = 276). Four SNPs located in these regions were genotyped using SEQUENOM technology and the genotypes obtained were tested for association with age at puberty. The results showed that SNPs rs135953349 and rs110604205 on BTA1 were still significantly associated with age of puberty estimated at progressive sperm motility of 10% (P < 0.05). The association previously found on Chromosome X could not be confirmed. Analysis of the bovine genome revealed that the associated region (99.17–99.99 Mb) contained four predicted loci: myelodysplasia syndrome 1 (MDS1) and ecotropic virus integration site 1 (EVI1) complex locus (MECOM), eGF-like and EMI domain-containing 1 pseudogene-like (LOC100337483), microRNA mir-551b (MIR551B) and mCG140927-like (LOC100139843). The results obtained could contribute to the understanding of puberty regulation and could be useful for further identification and annotation of gene function in the context of reproduction.

Additional keywords: gene, genetics, genotyping, livestock, polymorphism.


References

Alliston, T., Ko, T. C., Cao, Y., Liang, Y. Y., Feng, X. H., Chang, C., and Derynck, R. (2005). Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J. Biol. Chem. 280, 24227–24237.
Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlKgs7o%3D&md5=8263b8e9fc53370ee7c9bd5044e917b9CAS | 15849193PubMed |

Alvarez-Garcia, I., and Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development 132, 4653–4662.
MicroRNA functions in animal development and human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12gsbjI&md5=380cce3b3a95721ff12069ab80284574CAS | 16224045PubMed |

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.
The functions of animal microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFaiu7g%3D&md5=680a4d5e110f752b484bc14f7a8ea2edCAS | 15372042PubMed |

Bard-Chapeau, E. A., Gunaratne, J., Kumar, P., Chua, B. Q., Muller, J., Bard, F. A., Blackstock, W., Copeland, N. G., and Jenkins, N. A. (2013). EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc. Natl. Acad. Sci. USA 110, E2885–E2894.
EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12htbrJ&md5=dcd84f297a953bdbe6f7fbd7f46e9945CAS | 23858473PubMed |

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297.
MicroRNAs: genomics, biogenesis, mechanism and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVals7o%3D&md5=fc960c1a4641f6b0f2c243fdc61774b8CAS | 14744438PubMed |

Curry, E., Safranski, T. J., and Pratt, S. J. (2011). Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 76, 1532–1539.
Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isbbI&md5=d9091d38a93d05609f16379a6aaf4382CAS | 21872314PubMed |

Fernández, M. E., Lirón, J. P., Prando, A., Rogberg-Muñoz, A., Peral-García, P., Baldo, A., and Giovambattista, G. (2014). Evidence of association of a BTA20 region peaked in ISL1 with puberty in Angus bulls. Livest. Sci. 167, 9–18.
Evidence of association of a BTA20 region peaked in ISL1 with puberty in Angus bulls.Crossref | GoogleScholarGoogle Scholar |

Fortes, M. R. S., Reverter, A., Nagaraj, S. H., Zhang, Y., Jonsson, N. N., Barris, W., Lehnert, S., Boe-Hansen, G. B., and Hawken, R. J. (2011). A single nucleotide polymorphism-derived regulatory gene network underlying puberty in two tropical breeds of beef cattle. J. Anim. Sci. 89, 1669–1683.
A single nucleotide polymorphism-derived regulatory gene network underlying puberty in two tropical breeds of beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWktrw%3D&md5=9757d71cd36b220b1b15c9fa6f8fe432CAS |

Fortes, M. R. S., Reverter, A., Hawken, R. J., Bolormaa, S., and Lehnert, S. A. (2012a). Candidate genes associated with hormone levels of inhibin, luteinising hormone and insulin-like growth factor 1, testicular development and sperm quality in Brahman bulls. Biol. Reprod. 87, 58.
Candidate genes associated with hormone levels of inhibin, luteinising hormone and insulin-like growth factor 1, testicular development and sperm quality in Brahman bulls.Crossref | GoogleScholarGoogle Scholar |

Fortes, M. R. S., Lehnert, S. A., Bolormaa, S., Reich, C., Fordyce, G., Corbet, N. J., Whan, V., Hawken, R. J., and Reverter, A. (2012b). Finding genes for economically important traits: Brahman cattle puberty. Anim. Prod. Sci. 52, 143–150.
Finding genes for economically important traits: Brahman cattle puberty.Crossref | GoogleScholarGoogle Scholar |

Hawken, R. J., Zhang, Y. D., Fortes, M. R., Collis, E., Barris, W. C., Corbet, N. J., Williams, P. J., Fordyce, G., Holroyd, R. G., Walkley, J. R., Barendse, W., Johnston, D. J., Prayaga, K. C., Tier, B., Reverter, A., and Lehnert, S. A. (2012). Genome-wide association studies of female reproduction in tropically adapted beef cattle. J. Anim. Sci. 90, 1398–1410.
Genome-wide association studies of female reproduction in tropically adapted beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1eis7w%3D&md5=7623094a05c4e11803324508e3564057CAS | 22100599PubMed |

Hiller, M., Chen, X., Pringle, M. J., Suchorolski, M., Sancak, Y., Viswanathan, S., Bolival, B., Lin, T. Y., Marino, S., and Fuller, M. T. (2004). Testis-specific TAF homologs collaborate to control a tissue-specific transcription program. Development 131, 5297–5308.
Testis-specific TAF homologs collaborate to control a tissue-specific transcription program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjs7bO&md5=a8073f7cc9d3eb26d4a0b13707818447CAS | 15456720PubMed |

Itman, C., Mendis, S., Barakat, B., and Loveland, K. L. (2006). All in the family: TGF-beta family action in testis development. Reproduction 132, 233–246.
All in the family: TGF-beta family action in testis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsrg%3D&md5=cb2e2f548e8810c1d18666d4356c376cCAS | 16885532PubMed |

Kubo, E., Hasanova, N., Sasaki, H., and Singh, D. P. (2013). Dynamic and differential regulation in the microRNA expression in the developing and mature cataractous rat lens. J. Cell. Mol. Med. 17, 1146–1159.
Dynamic and differential regulation in the microRNA expression in the developing and mature cataractous rat lens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGgurbI&md5=dfca5e7061d351e623df37b3157b2103CAS | 23844765PubMed |

Kurokawa, M., Mitani, K., Irie, K., Matsuyama, T., Takahashi, T., Chiba, S., Yazaki, Y., Matsumoto, K., and Hirai, H. (1998). The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394, 92–96.
The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOrtro%3D&md5=27adda786d3bf6e19757b6a6eea73fbbCAS | 9665135PubMed |

Kustikova, O. S., Schwarzer, A., Stahlhut, M., Brugman, M. H., Neumann, T., Yang, M., Li, Z., Schambach, A., Heinz, N., Gerdes, S., Roeder, I., Ha, T. C., Steinemann, D., Schlegelberger, B., and Baum, C. (2013). Activation of Evi1 inhibits cell-cycle progression and differentiation of haematopoietic progenitor cells. Leukemia 27, 1127–1138.
Activation of Evi1 inhibits cell-cycle progression and differentiation of haematopoietic progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVOjurY%3D&md5=543b385a3315887ab7eb2316ffd20b15CAS | 23212151PubMed |

Lesmeister, J. L., Burfening, P. J., and Blackwell, R. L. (1973). Date of first calving in beef cows and subsequent calf production. J. Anim. Sci. 36, 1–6.
Date of first calving in beef cows and subsequent calf production.Crossref | GoogleScholarGoogle Scholar |

Lirón, J. P., Prando, A., Fernández, M. E., Ripoli, M. V., Rogberg-Muñoz, A., Goszczynski, D. E., Posik, D. M., Peral-García, P., Baldo, A., and Giovambattista, G. (2012). Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle. BMC Genet. 13, 26.
Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle.Crossref | GoogleScholarGoogle Scholar | 22480211PubMed |

Loveland, K. L., and Hime, G. (2005). TGFβ superfamily members in spermatogenesis: setting the stage for fertility in mouse and Drosophila. Cell Tissue Res. 322, 141–146.
TGFβ superfamily members in spermatogenesis: setting the stage for fertility in mouse and Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmu7zE&md5=d33be8efb3a9d9e85e96ee8c534a6f18CAS | 16049683PubMed |

McClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., McKay, S. D., Gregg, S. J., Chapple, R. H., Northcutt, S. L., and Taylor, J. F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41, 597–607.
A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslOhsw%3D%3D&md5=9bc3b07e030c0710c33b86660f5985acCAS | 20477797PubMed |

Ojeda, S. R., Dubay, C., Lomniczi, A., Kaidar, G., Matagne, V., Sandau, U. S., and Dissen, G. A. (2010). Gene networks and the neuroendocrine regulation of puberty. Mol. Cell. Endocrinol. 324, 3–11.
Gene networks and the neuroendocrine regulation of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWru7g%3D&md5=b8844636a15d9527a67d31779502bd6eCAS | 20005919PubMed |

Phillips, D. J. (2005). Activins, inhibins and follistatins in the large domestic species. Domest. Anim. Endocrinol. 28, 1–16.
Activins, inhibins and follistatins in the large domestic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCqt77M&md5=78cc2c9fb302e925ebbe8753e2dd1037CAS | 15620803PubMed |

Shi, Y., and Massagué, J. (2003). Mechanisms of TGF-beta signalling from cell membrane to the nucleus. Cell 113, 685–700.
Mechanisms of TGF-beta signalling from cell membrane to the nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVekt7o%3D&md5=f0639f5cca6853cff3e574373d767c71CAS | 12809600PubMed |

Sood, R., Talwar-Trikha, A., Chakrabarti, S. R., and Nucifora, G. (1999). MDS1/EVI1 enhances TGF-beta1 signalling and strengthens its growth-inhibitory effect but the leukaemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth inhibition in response to TGF-beta1. Leukemia 13, 348–357.
MDS1/EVI1 enhances TGF-beta1 signalling and strengthens its growth-inhibitory effect but the leukaemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth inhibition in response to TGF-beta1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFamtrw%3D&md5=6dbc25571455836d0b5602272b2a088dCAS | 10086725PubMed |

Verhoeven, G., Willems, A., Denolet, E., Swinnen, J. V., and De Gendt, K. (2010). Androgens and spermatogenesis: lessons from transgenic mouse models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1537–1556.
Androgens and spermatogenesis: lessons from transgenic mouse models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaisr3L&md5=c290cc63ecde929073b147c3b03dd024CAS | 20403868PubMed |

Ye, R. S., Xi, Q. Y., Qi, Q., Cheng, X., Chen, T., Li, H., Kallon, S., Shu, G., Wang, S. B., Jiang, Q. Y., and Zhang, Y. L. (2013). Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS ONE 8, e57156.
Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslChtbg%3D&md5=31067e586ed200b3b0345900d8b7ca5fCAS | 23451171PubMed |