Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dynamics of Notch signalling in the mouse oviduct and uterus during the oestrous cycle

D. Murta A B , M. Batista A , A. Trindade A C , E. Silva A , L. Mateus A , A. Duarte A C and L. Lopes-da-Costa A D
+ Author Affiliations
- Author Affiliations

A Reproduction and Development, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal.

B CBIOS–Research Centre for Biosciences and Health Technologies, Faculty of Veterinary Medicine, Lusófona University of Humanities and Technologies, Campo Grande 376, 1749 – 024 Lisboa, Portugal.

C Gulbenkian Institute of Science, 2780-156 Oeiras, Portugal.

D Corresponding author. Email: lcosta@fmv.ulisboa.pt

Reproduction, Fertility and Development 28(11) 1663-1678 https://doi.org/10.1071/RD15029
Submitted: 20 February 2014  Accepted: 19 March 2015   Published: 5 May 2015

Abstract

The oviduct and uterus undergo extensive cellular remodelling during the oestrous cycle, requiring finely tuned intercellular communication. Notch is an evolutionarily conserved cell signalling pathway implicated in cell fate decisions in several tissues. In the present study we evaluated the quantitative real-time polymerase chain reaction (real-time qPCR) and expression (immunohistochemistry) patterns of Notch components (Notch14, Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged12) and effector (hairy/enhancer of split (Hes) 12, Hes5 and Notch-Regulated Ankyrin Repeat-Containing Protein (Nrarp)) genes in the mouse oviduct and uterus throughout the oestrous cycle. Notch genes are differentially transcribed and expressed in the mouse oviduct and uterus throughout the oestrous cycle. The correlated transcription levels of Notch components and effector genes, and the nuclear detection of Notch effector proteins, indicate that Notch signalling is active. The correlation between transcription levels of Notch genes and progesterone concentrations, and the association between expression of Notch proteins and progesterone receptor (PR) activation, indicate direct progesterone regulation of Notch signalling. The expression patterns of Notch proteins are spatially and temporally specific, resulting in unique expression combinations of Notch receptor, ligand and effector genes in the oviduct luminal epithelium, uterus luminal and glandular epithelia and uterine stroma throughout the oestrous cycle. Together, the results of the present study imply a regulatory role for Notch signalling in oviduct and uterine cellular remodelling occurring throughout the oestrous cycle.

Additional keyword: epithelium.


References

Afshar, Y., Jeong, J.-W., Roqueiro, D., Demayo, F., Lydon, J., Radtke, F., Radnor, R., Miele, L., and Fazleabas, A. (2012a). Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J. 26, 282–294.
Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlCgsA%3D%3D&md5=05a0bf156be70f62098a6a3eec974723CAS | 21990372PubMed |

Afshar, Y., Miele, L., and Fazleabas, A. T. (2012b). Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates. Endocrinology 153, 2884–2896.
Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1eiuro%3D&md5=f9b0362da5118c2ff254452586f11b5fCAS | 22535768PubMed |

Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. (1995). Notch signaling. Science 268, 225–232.
Notch signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCitLg%3D&md5=da683405a98279c4ec76448c1091c8cbCAS | 7716513PubMed |

Basch, M. L., Ohyama, T., Segil, N., and Groves, A. K. (2011). Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPjkappa. J. Neurosci. 31, 8046–8058.
Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPjkappa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFyktLg%3D&md5=e81b41a715cf383a8772f4ab140510a8CAS | 21632926PubMed |

Borggrefe, T., and Oswald, F. (2009). The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646.
The Notch signaling pathway: transcriptional regulation at Notch target genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGqu7s%3D&md5=bc60b9df9f8b1160c4fb10218a21f663CAS | 19165418PubMed |

Boucher, J., Gridley, T., and Liaw, L. (2012). Molecular pathways of notch signaling in vascular smooth muscle cells. Front. Physiol. 3, 81.
| 1:CAS:528:DC%2BC38XmsFGqtrs%3D&md5=e01696caf396445de2794de17f9ccdbaCAS | 22509166PubMed |

Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689.
Notch signalling: a simple pathway becomes complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12isr4%3D&md5=b26777887d8829db306260b459d492a4CAS | 16921404PubMed |

Cobellis, L., Caprio, F., Trabucco, E., Mastrogiacomo, A., Coppola, G., Manente, L., Colacurci, N., De Falco, M., and De Luca, A. (2008). The pattern of expression of Notch protein members in normal and pathological endometrium. J. Anat. 213, 464–472.
The pattern of expression of Notch protein members in normal and pathological endometrium.Crossref | GoogleScholarGoogle Scholar | 18691378PubMed |

Corbeil, L. B., Chatterjee, A., Foresman, L., and Westfall, J. A. (1985). Ultrastructure of cyclic changes in the murine uterus, cervix, and vagina. Tissue Cell 17, 53–68.
Ultrastructure of cyclic changes in the murine uterus, cervix, and vagina.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3hvFKitA%3D%3D&md5=6bc8a7f4cf51fcbf723c2e6a97d87aa2CAS | 4039853PubMed |

Degaki, K. Y., Chen, Z., Yamada, A. T., and Croy, B. A. (2012). Delta-like ligand (DLL) 1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS ONE 7, e52037.
Delta-like ligand (DLL) 1 expression in early mouse decidua and its localization to uterine natural killer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVyitg%3D%3D&md5=ad077bd90f8c226b79723df542ae93eeCAS | 23284862PubMed |

Fischer, A., and Gessler, M. (2007). Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35, 4583–4596.
Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Cisbs%3D&md5=24ae5c14bc74dfcd85a054559f7e7a9aCAS | 17586813PubMed |

Hewitt, S. C., Deroo, B. J., Hansen, K., Collins, J., Grissom, S., Afshari, C. A., and Korach, K. S. (2003). Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol. Endocrinol. 17, 2070–2083.
Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSrsb0%3D&md5=9535306ec982346c1b7a73021b27f112CAS | 12893882PubMed |

Iso, T., Kedes, L., and Hamamori, Y. (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255.
HES and HERP families: multiple effectors of the Notch signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKiurs%3D&md5=0f1024e629da06bc28903a7cdd0bf513CAS | 12548545PubMed |

Ito, T., Connett, J. M., Kunkel, S. L., and Matsukawa, A. (2012). Notch system in the linkage of innate and adaptive immunity. J. Leukoc. Biol. 92, 59–65.
Notch system in the linkage of innate and adaptive immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOrsb3N&md5=6161c5bf1ee127b47c68ef93145d6a84CAS | 22459946PubMed |

Jeoung, M., and Bridges, P. J. (2011). Cyclic regulation of apoptotic gene expression in the mouse oviduct. Reprod. Fertil. Dev. 23, 638–644.
Cyclic regulation of apoptotic gene expression in the mouse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWqurw%3D&md5=ad2358640f22ea6f6fff66d23bf3dddaCAS | 21635812PubMed |

Johnson, J., Espinoza, T., McGaughey, R. W., Rawls, A., and Wilson-Rawls, J. (2001). Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361.
Notch pathway genes are expressed in mammalian ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1KgtLY%3D&md5=e9a5591d4d403e3d951034e891c49ba0CAS | 11731249PubMed |

Kintner, C. (2002). Neurogenesis in embryos and in adult neural stem cells. J. Neurosci. 22, 639–643.
| 1:CAS:528:DC%2BD38XhtFygtb4%3D&md5=f154c6e7f999d53e47655a7c6f140515CAS | 11826093PubMed |

Liu, Y., Pathak, N., Kramer-Zucker, A., and Drummond, I. a. (2007). Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134, 1111–1122.
Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVSnsbg%3D&md5=4efe85f196110cfe1312b9268f5eeadeCAS | 17287248PubMed |

Liu, H., Kennard, S., and Lilly, B. (2009). NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ. Res. 104, 466–475.
NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFejtLY%3D&md5=8fceb666dec780c2d45e37f10ae26a23CAS | 19150886PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=6db539426b70529f14f65734e4c1d0f6CAS | 11846609PubMed |

Manosalva, I., González, A., and Kageyama, R. (2013). Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation. Dev. Biol. 375, 140–151.
Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVGmtrY%3D&md5=a025ec341471721c11eb4b16403fd27bCAS | 23274689PubMed |

Mazella, J., Liang, S., and Tseng, L. (2008). Expression of Delta-like protein 4 in the human endometrium. Endocrinology 149, 15–19.
Expression of Delta-like protein 4 in the human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVOqsQ%3D%3D&md5=da2a33dd3f59b9db4be41d640e7263daCAS | 17916635PubMed |

Mikhailik, A., Mazella, J., Liang, S., and Tseng, L. (2009). Notch ligand-dependent gene expression in human endometrial stromal cells. Biochem. Biophys. Res. Commun. 388, 479–482.
Notch ligand-dependent gene expression in human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSnsr%2FP&md5=b7f544c4f4decbdfcb3e6035676f27b5CAS | 19607805PubMed |

Murta, D., Batista, M., Silva, E., Trindade, A., Mateus, L., and Lopes-da-Costa, L. (2014). Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod. Fertil. Dev. , .
Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 24695060PubMed |

Noah, T. K., and Shroyer, N. F. (2013). Notch in the intestine: regulation of homeostasis and pathogenesis. Annu. Rev. Physiol. 75, 263–288.
Notch in the intestine: regulation of homeostasis and pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFOntrw%3D&md5=c1899fe2fb4f1fd8bdee182fddd2a9d1CAS | 23190077PubMed |

Pirot, P., van Grunsven, L. A., Marine, J.-C., Huylebroeck, D., and Bellefroid, E. J. (2004). Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem. Biophys. Res. Commun. 322, 526–534.
Direct regulation of the Nrarp gene promoter by the Notch signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFeksrc%3D&md5=02cb99774c2fff54e897497e0458aaf8CAS | 15325262PubMed |

Radtke, F., Macdonald, H. R., and Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427–437.
Regulation of innate and adaptive immunity by Notch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVymtr0%3D&md5=72beff1db60183cb3497012692833ed3CAS | 23665520PubMed |

Shimizu, K., Chiba, S., Saito, T., Kumano, K., Hamada, Y., and Hirai, H. (2002). Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem. Biophys. Res. Commun. 291, 775–779.
Functional diversity among Notch1, Notch2, and Notch3 receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFWjsL8%3D&md5=7b0d071edf4edbc5910dad0d7d9fc124CAS | 11866432PubMed |

Shirley, B., and Reeder, R. L. (1996). Cyclic changes in the ampulla of the rat oviduct. J. Exp. Zool. 276, 164–173.
Cyclic changes in the ampulla of the rat oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FlsFOqsQ%3D%3D&md5=2180d2e1bf4bf8a652b7ae6fb2d90b0dCAS | 8900079PubMed |

Silva, E., Leitão, S., Henriques, S., Kowalewski, M. P., Hoffmann, B., Ferreira-Dias, G., Lopes-da-Costa, L., and Mateus, L. (2010). Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia–pyometra complex. J. Reprod. Immunol. 84, 66–74.
Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia–pyometra complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1aqtQ%3D%3D&md5=9b91726f47ad3cb0a5b6fb02ef48256fCAS | 19945173PubMed |

Silva, E., Henriques, S., Brito, S., Ferreira-Dias, G., Lopes-da-Costa, L., and Mateus, L. (2012). Oestrous cycle-related changes in production of Toll-like receptors and prostaglandins in the canine endometrium. J. Reprod. Immunol. 96, 45–57.
Oestrous cycle-related changes in production of Toll-like receptors and prostaglandins in the canine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmsLrJ&md5=b15ab39bb940b700ba0303ef662ed6e9CAS | 22959486PubMed |

Trombly, D. J., Woodruff, T. K., and Mayo, K. E. (2009). Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150, 1014–1024.
Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sgt74%3D&md5=7c79769be72bec93bbb3b9fefdce696fCAS | 18818300PubMed |

Van Sinderen, M., Cuman, C., Gamage, T., Rainczuk, K., Osianlis, T., Rombauts, L., and Dimitriadis, E. (2014). Localisation of the Notch family in the human endometrium of fertile and infertile women. J. Mol. Histol. 45, 697–706.
Localisation of the Notch family in the human endometrium of fertile and infertile women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ais7jK&md5=951401f1fc9c962aa8b0f2bea4ce22e0CAS | 25034535PubMed |

Wood, G. A., Fata, J. E., Watson, K. L. M., and Khokha, R. (2007). Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 133, 1035–1044.
Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGmsro%3D&md5=59e246d019384fe5a568e8deac4f0e12CAS | 17616732PubMed |

Yuan, Z., Friedmann, D. R., Vanderwielen, B. D., Collins, K. J., and Kovall, R. A. (2012). Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J. Biol. Chem. 287, 34 904–34 916.
Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSgsL7L&md5=53348f171daf41391132dcbf3ead20c6CAS |

Zavadil, J., Cermak, L., Soto-Nieves, N., and Böttinger, E. P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165.
Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFChurw%3D&md5=831d19f8764ac7e61a7217dcc4a76876CAS | 14976548PubMed |