Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success

Olivier Sandra A B E , Nadéra Mansouri-Attia C and Richard G. Lea D
+ Author Affiliations
- Author Affiliations

A INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.

B ENVA, F-94704 Maisons Alfort, France.

C School of Agriculture, Food Science and Veterinary Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.

D School of Veterinary Medicine and Science, University of Nottingham Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.

E Corresponding author. Email: olivier.sandra@jouy.inra.fr

Reproduction, Fertility and Development 24(1) 68-79 https://doi.org/10.1071/RD11908
Published: 6 December 2011

Abstract

Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.

Additional keywords: epigenetics, genomics, methylation, ruminants, somatic cloning, uterus.


References

Allegra, A., Marino, A., Coffaro, F., Lama, A., Rizza, G., Scaglione, P., Sammartano, F., Santoro, A., and Volpes, A. (2009). Is there a uniform basal endometrial gene expression profile during the implantation window in women who became pregnant in a subsequent ICSI cycle? Hum. Reprod. 24, 2549–2557.
Is there a uniform basal endometrial gene expression profile during the implantation window in women who became pregnant in a subsequent ICSI cycle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqurbK&md5=6c360fa9a3947879c78b767da64c1b6fCAS | 19542542PubMed |

Aplin, J. (2010). Redefining endometrial receptivity. Indian J. Physiol. Pharmacol. 54, 1–6.

Barnes, F. L. (2000). The effects of the early uterine environment on the subsequent development of embryo and fetus. Theriogenology 53, 649–658.
The effects of the early uterine environment on the subsequent development of embryo and fetus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFagsw%3D%3D&md5=590bcca072026f4b669cc7ba1d325304CAS | 10735056PubMed |

Bartol, F. F., Wiley, A. A., Floyd, J. G., Ott, T. L., Bazer, F. W., Gray, C. A., and Spencer, T. E. (1999). Uterine differentiation as a foundation for subsequent fertility. J. Reprod. Fertil. Suppl. 54, 287–302.
| 1:STN:280:DC%2BD3c7lslamsw%3D%3D&md5=18d1ecfaa4a5a56222f68d58627a1921CAS | 10692862PubMed |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Einspanier, R., Wenigerkind, H., Vermehren, M., Blum, H., Sinowatz, F., and Wolf, E. (2005). Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J. Mol. Endocrinol. 34, 889–908.
Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisL8%3D&md5=d081dd2c742e60fd0ed43902b47546a2CAS | 15956356PubMed |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Wenigerkind, H., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132, 319–331.
Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs7s%3D&md5=33d6a11e661942e32cef6aa7017feac8CAS | 16885540PubMed |

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H. D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=b387a5604d2b249d7c69c956b16366cfCAS | 19307558PubMed |

Bazer, F. W., Roberts, R. M., Basha, S. M., Zavy, M. T., Caton, D., and Barron, D. H. (1979). Method for obtaining ovine uterine secretions from unilaterally pregnant ewes. J. Anim. Sci. 49, 1522–1527.
| 1:STN:280:DyaL3c7hsFemsA%3D%3D&md5=caa4096abb9e917c64c90e0b900e7d99CAS | 528437PubMed |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt74%3D&md5=0dddbbee57332fc3828ef890b3b5fea6CAS | 19502456PubMed |

Bazer, F. W., Wu, G., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Bayless, K. (2010). Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol. Hum. Reprod. 16, 135–152.
Novel pathways for implantation and establishment and maintenance of pregnancy in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKru7g%3D&md5=7c40d13f24d56512263d26009bb0369fCAS | 19880575PubMed |

Beltman, M. E., Roche, J. F., Lonergan, P., Forde, N., and Crowe, M. A. (2009). Evaluation of models to induce low progesterone during the early luteal phase in cattle. Theriogenology 72, 986–992.
Evaluation of models to induce low progesterone during the early luteal phase in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsrrP&md5=88f62c6dcef227981aea679437d03581CAS | 19716596PubMed |

Besenfelder, U., Havlicek, V., Kuzmany, A., and Brem, G. (2010). Endoscopic approaches to manage in vitro and in vivo embryo development: use of the bovine oviduct. Theriogenology 73, 768–776.
Endoscopic approaches to manage in vitro and in vivo embryo development: use of the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7ot1ahtA%3D%3D&md5=b3f3f02caac1f50fb9bad3ae779f2843CAS | 19682732PubMed |

Bulletti, C., Palagiano, A., Pace, C., Cerni, A., Borini, A., and de, Z. D. (2011). The artificial womb. Ann. N. Y. Acad. Sci. 1221, 124–128.
The artificial womb.Crossref | GoogleScholarGoogle Scholar | 21401640PubMed |

Burton, G. J., Jauniaux, E., and Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312.
The influence of the intrauterine environment on human placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVajtb8%3D&md5=0593a0ac26ac09bf9ed0d9b5b347a0d2CAS | 19757391PubMed |

Carter, F., Forde, N., Duffy, P., Wade, M., Fair, T., Crowe, M. A., Evans, A. C., Kenny, D. A., Roche, J. F., and Lonergan, P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20, 368–375.
Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKksLg%3D&md5=fb0e332b80e7323eedc60036d56ef2c8CAS | 18402756PubMed |

Chavatte-Palmer, P., and Guillomot, M. (2007). Comparative implantation and placentation. Gynecol. Obstet. Invest. 64, 166–174.
Comparative implantation and placentation.Crossref | GoogleScholarGoogle Scholar | 17934314PubMed |

Clemente, M., de La, F. J., Fair, T., Al, N. A., Gutierrez-Adan, A., Roche, J. F., Rizos, D., and Lonergan, P. (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138, 507–517.
Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvL&md5=c2b93accf694e764a9eab6c4efb1a01cCAS | 19556439PubMed |

Clemente, M., Lopez-Vidriero, I., O’Gaora, P., Mehta, J. P., Forde, N., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2011). Transcriptome changes at the initiation of elongation in the bovine conceptus. Biol. Reprod. 85, 285–295.
Transcriptome changes at the initiation of elongation in the bovine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOnurg%3D&md5=b63519253ccecd50ffb789a961d6912cCAS | 21508349PubMed |

Coll, M. L. (2009). Cloned embryos can’t fool a womb. Nature Report Stem Cells , .
Cloned embryos can’t fool a womb.Crossref | GoogleScholarGoogle Scholar |

Degrelle, S. A., Campion, E., Cabau, C., Piumi, F., Reinaud, P., Richard, C., Renard, J. P., and Hue, I. (2005). Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev. Biol. 288, 448–460.
Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaitrjN&md5=ae076896526ce19ad5a731f05414db33CAS | 16289134PubMed |

Douglas, A. J. (2011). Mother–offspring dialogue in early pregnancy: Impact of adverse environment on pregnancy maintenance and neurobiology. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1167–1177.
Mother–offspring dialogue in early pregnancy: Impact of adverse environment on pregnancy maintenance and neurobiology.Crossref | GoogleScholarGoogle Scholar | 20688125PubMed |

Dunlap, K. A., Palmarini, M., Varela, M., Burghardt, R. C., Hayashi, K., Farmer, J. L., and Spencer, T. E. (2006). Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc. Natl Acad. Sci. USA 103, 14 390–14 395.
Endogenous retroviruses regulate periimplantation placental growth and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOgsrzJ&md5=48494ffe66d24ef3d9727ad4ff101f7bCAS |

Edwards, R. G. (1995). Clinical approaches to increasing uterine receptivity during human implantation. Hum. Reprod. 10, 60–66.
| 8745302PubMed |

Esteban, M. A., Peng, M., Deli, Z., Cai, J., Yang, J., Xu, J., Lai, L., and Pei, D. (2010). Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62, 277–282.
| 1:CAS:528:DC%2BC3cXktVCkt7s%3D&md5=d073976ff246724c0b436ea0828c20f1CAS | 20101630PubMed |

Evans, A. C., Forde, N., O’Gorman, G. M., Zielak, A. E., Lonergan, P., and Fair, T. (2008). Use of microarray technology to profile gene expression patterns important for reproduction in cattle. Reprod. Domest. Anim. 43, 359–367.
Use of microarray technology to profile gene expression patterns important for reproduction in cattle.Crossref | GoogleScholarGoogle Scholar | 18638147PubMed |

Feng, S., Jacobsen, S. E., and Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science 330, 622–627.
Epigenetic reprogramming in plant and animal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7fM&md5=1f877fff293d8f28a021f41e05e89d16CAS | 21030646PubMed |

Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D. J., Watkins, A. J., and Eckert, J. J. (2004). The embryo and its future. Biol. Reprod. 71, 1046–1054.
The embryo and its future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrg%3D&md5=be62fc47c5e7f73da01549c09a296e93CAS | 15215194PubMed |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C., Spencer, T. E., Bazer, F. W., McBride, R., Boland, M. P., O’Gaora, P., Lonergan, P., and Roche, J. F. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLbM&md5=d5b87f63f4bfb6dba0d5025dcdce42adCAS | 19553605PubMed |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011a). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=f5452608cf2c4895d4fb4fdcc1a16252CAS | 20881316PubMed |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011b). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=cd6252aae3650587c3d9a1df4a048422CAS | 21349821PubMed |

Furbass, R., Said, H. M., Schwerin, M., and Vanselow, J. (2001). Chromatin structure of the bovine Cyp19 promoter 1.1. DNaseI hypersensitive sites and DNA hypomethylation correlate with placental expression. Eur. J. Biochem. 268, 1222–1227.
Chromatin structure of the bovine Cyp19 promoter 1.1. DNaseI hypersensitive sites and DNA hypomethylation correlate with placental expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFSksLw%3D&md5=8b56459e9116117b832f3d5da442c2e7CAS | 11231273PubMed |

Gad, A., Besenfelder, U., Rings, F., Ghanem, N., Salilew-Wondim, D., Hossain, M. M., Tesfaye, D., Lonergan, P., Becker, A., Cinar, U., Schellander, K., Havlicek, V., and Holker, M. (2011). Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum. Reprod. 26, 1693–1707.
Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MngtVehtg%3D%3D&md5=1dea60a5c44c382159962b49ca7fb5b6CAS | 21531990PubMed |

Garrett, J. E., Geisert, R. D., Zavy, M. T., Gries, L. K., Wettemann, R. P., and Buchanan, D. S. (1988). Effect of exogenous progesterone on prostaglandin F2 alpha release and the interestrous interval in the bovine. Prostaglandins 36, 85–96.
Effect of exogenous progesterone on prostaglandin F2 alpha release and the interestrous interval in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1aktr4%3D&md5=914e6fabc9bd455295c27d86a483265fCAS | 3175025PubMed |

Giraldo, A. M., Hylan, D. A., Ballard, C. B., Purpera, M. N., Vaught, T. D., Lynn, J. W., Godke, R. A., and Bondioli, K. R. (2008). Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol. Reprod. 78, 832–840.
Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOnsr4%3D&md5=a17d7f55284123be62716656254eed48CAS | 18199878PubMed |

Golding, M. C., Long, C. R., Carmell, M. A., Hannon, G. J., and Westhusin, M. E. (2006). Suppression of prion protein in livestock by RNA interference. Proc. Natl Acad. Sci. USA 103, 5285–5290.
Suppression of prion protein in livestock by RNA interference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslaqtbo%3D&md5=27e2df2ab55d1a2c6fe15bfe3f9d3a0cCAS | 16567624PubMed |

Gray, C. A., Burghardt, R. C., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2002). Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124, 289–300.
Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCitL8%3D&md5=8459ac1020520773b11d7c88fbd1e795CAS | 12141942PubMed |

Gray, C. A., Abbey, C. A., Beremand, P. D., Choi, Y., Farmer, J. L., Adelson, D. L., Thomas, T. L., Bazer, F. W., and Spencer, T. E. (2006). Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol. Reprod. 74, 383–394.
Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktg%3D%3D&md5=3d1ebd82d6acfd1ed3a5efa2a9f0f5e3CAS | 16251498PubMed |

Guillomot, M. (1995). Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. Suppl. 49, 39–51.
| 1:CAS:528:DyaK2MXmslWit7g%3D&md5=e3c50b6d9935912afb26a33cdda70877CAS | 7623329PubMed |

Hansen, P. J. (1998). Regulation of uterine immune function by progesterone–lessons from the sheep. J. Reprod. Immunol. 40, 63–79.
Regulation of uterine immune function by progesterone–lessons from the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1ersL4%3D&md5=072d29b5842202022c1df0c78e1df52fCAS | 9862257PubMed |

Heyman, Y. (2005). Nuclear transfer: a new tool for reproductive biotechnology in cattle. Reprod. Nutr. Dev. 45, 353–361.
Nuclear transfer: a new tool for reproductive biotechnology in cattle.Crossref | GoogleScholarGoogle Scholar | 15982460PubMed |

Hue, I., Degrelle, S. A., Campion, E., and Renard, J. P. (2007). Gene expression in elongating and gastrulating embryos from ruminants. Soc. Reprod. Fertil. Suppl. 64, 365–377.
| 1:CAS:528:DC%2BD1cXpvVyrsLk%3D&md5=19f19d5e0ba23504376820bf373ddd1bCAS | 17491159PubMed |

Igwebuike, U. M. (2009). A review of uterine structural modifications that influence conceptus implantation and development in sheep and goats. Anim. Reprod. Sci. 112, 1–7.
A review of uterine structural modifications that influence conceptus implantation and development in sheep and goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ptFCjtg%3D%3D&md5=bffcdacccb2570d2853204a1af518ab4CAS | 19162416PubMed |

Jammes, H., Junien, C., and Chavatte-Palmer, P. (2011). Epigenetic control of development and expression of quantitative traits. Reprod. Fertil. Dev. 23, 64–74.
Epigenetic control of development and expression of quantitative traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVyqsLY%3D&md5=9aa819f22ffe49aa9847e15afc04d208CAS | 21366982PubMed |

Jiang, S. W., Li, J., Podratz, K., and Dowdy, S. (2008). Application of DNA methylation biomarkers for endometrial cancer management. Expert Rev. Mol. Diagn. 8, 607–616.
Application of DNA methylation biomarkers for endometrial cancer management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSms7jM&md5=22692572460cc3f2fe09d24f6be4b2eaCAS | 18785809PubMed |

Johnson, G. A., Burghardt, R. C., Joyce, M. M., Spencer, T. E., Bazer, F. W., Pfarrer, C., and Gray, C. A. (2003). Osteopontin expression in uterine stroma indicates a decidualization-like differentiation during ovine pregnancy. Biol. Reprod. 68, 1951–1958.
Osteopontin expression in uterine stroma indicates a decidualization-like differentiation during ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggsrk%3D&md5=a7d7c16a59404f8c542ac7092f2da514CAS | 12606396PubMed |

Kang, Y. K., Park, J. S., Koo, D. B., Choi, Y. H., Kim, S. U., Lee, K. K., and Han, Y. M. (2002). Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J. 21, 1092–1100.
Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFyltro%3D&md5=271cad01c83675980f21a7626b9d0eeeCAS | 11867537PubMed |

Kawamata, M., and Ochiya, T. (2011). Gene-manipulated embryonic stem cells for rat transgenesis. Cell. Mol. Life Sci. 68, 1911–1915.
Gene-manipulated embryonic stem cells for rat transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVelsLg%3D&md5=0e75283db1ad56869081b020bf01a2b7CAS | 21437643PubMed |

Kimura, K. (2005). Mechanisms for establishment of pregnancy in mammalian species. J. Mamm. Ova Res. 22, 101–118.
Mechanisms for establishment of pregnancy in mammalian species.Crossref | GoogleScholarGoogle Scholar |

Klein, C., Bauersachs, S., Ulbrich, S. E., Einspanier, R., Meyer, H. H., Schmidt, S. E., Reichenbach, H. D., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol. Reprod. 74, 253–264.
Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kmuw%3D%3D&md5=f1206e3fbbe53a1cb000e5a03b4e81f9CAS | 16207835PubMed |

Kuroiwa, Y., Kasinathan, P., Matsushita, H., Sathiyaselan, J., Sullivan, E. J., Kakitani, M., Tomizuka, K., Ishida, I., and Robl, J. M. (2004). Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat. Genet. 36, 775–780.
Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1CkurY%3D&md5=05a04ce3ef839112a9873693668babe7CAS | 15184897PubMed |

Le Provost, F., Lillico, S., Passet, B., Young, R., Whitelaw, B., and Vilotte, J. L. (2010). Zinc finger nuclease technology heralds a new era in mammalian transgenesis. Trends Biotechnol. 28, 134–141.
Zinc finger nuclease technology heralds a new era in mammalian transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Ogtrg%3D&md5=8951711e048c805d15e0040b00fcb7e6CAS | 20015561PubMed |

Lea, R. G., and Sandra, O. (2007). Immunoendocrine aspects of endometrial function and implantation. Reproduction 134, 389–404.
Immunoendocrine aspects of endometrial function and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnur3M&md5=3c82f383a05f6b9034622c35e1244d35CAS | 17709558PubMed |

Lédée, N., Munaut, C., Aubert, J., Sérazin, V., Rahmati, M., Chaouat, G., Sandra, O., and Foidart, J. M. (2011). Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J. Pathol. , .
Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages.Crossref | GoogleScholarGoogle Scholar | 22025212PubMed |

Lee, K. Y., Jeong, J. W., Tsai, S. Y., Lydon, J. P., and DeMayo, F. J. (2007). Mouse models of implantation. Trends Endocrinol. Metab. 18, 234–239.
Mouse models of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotValtLo%3D&md5=546bc50e2cac1ddb25a349d2aad5349eCAS | 17588769PubMed |

Leroy, J. L., Van, S. A., Opsomer, G., Goovaerts, I. G., and Bols, P. E. (2008). Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod. Domest. Anim. 43, 623–632.
Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnksVeruw%3D%3D&md5=4503c88c0dd97dad4a5f4806fdaf014cCAS | 18384498PubMed |

Lim, H. J., and Wang, H. (2010). Uterine disorders and pregnancy complications: insights from mouse models. J. Clin. Invest. 120, 1004–1015.
Uterine disorders and pregnancy complications: insights from mouse models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVChs78%3D&md5=bb7d2e66c2f076430fe586870f1f3f4dCAS | 20364098PubMed |

Majewski, A. C., Tekin, S., and Hansen, P. J. (2001). Local versus systemic control of numbers of endometrial T cells during pregnancy in sheep. Immunology 102, 317–322.
Local versus systemic control of numbers of endometrial T cells during pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislart7k%3D&md5=b6754b4eb727dddddb434a8a0b461cf5CAS | 11298830PubMed |

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Degrelle, S., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J. P., and Sandra, O. (2009a). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=f9f4fa1d4c517edca219c639f5e9c66dCAS | 19622795PubMed |

Mansouri-Attia, N., Sandra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J. P. (2009b). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl Acad. Sci. USA 106, 5687–5692.
Endometrium as an early sensor of in vitro embryo manipulation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurY%3D&md5=6f3775ba2e639e48793d30b9e2c59cd6CAS | 19297625PubMed |

Marjani, S. L., Le, B. D., Vignon, X., Heyman, Y., Everts, R. E., Rodriguez-Zas, S. L., Lewin, H. A., Renard, J. P., Yang, X., and Tian, X. C. (2009). Embryonic gene expression profiling using microarray analysis. Reprod. Fertil. Dev. 21, 22–30.
Embryonic gene expression profiling using microarray analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislGgtL4%3D&md5=da748e86d2f2e92815cc67a27a41d9faCAS | 19152742PubMed |

Marselos, M., and Tomatis, L. (1992). Diethylstilboestrol: II, pharmacology, toxicology and carcinogenicity in experimental animals. Eur. J. Cancer 29A, 149–155.
| 1:CAS:528:DyaK3sXhtl2rurg%3D&md5=d09f89c7a815ef33ae618e4681f38975CAS | 1445734PubMed |

Martal, J. L., Chene, N. M., Huynh, L. P., L’Haridon, R. M., Reinaud, P. B., Guillomot, M. W., Charlier, M. A., and Charpigny, S. Y. (1998). IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80, 755–777.
IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvF2itr8%3D&md5=b2d99ec4a1a8a40329576f454562f9bcCAS | 9865498PubMed |

Mermillod, P., Schmaltz, B., Perreau, C., Tsikis, G., Martinot, E., Cordova, A., and Locatelli, Y. (2010). Early development of ruminant embryos, autonomous process or the result of a positive dialog with surrounding maternal tissues? Acta Scientiae Veterinariae. 38, s521–s533.

Mitko, K., Ulbrich, S. E., Wenigerkind, H., Sinowatz, F., Blum, H., Wolf, E., and Bauersachs, S. (2008). Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 135, 225–240.
Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtLo%3D&md5=f24a6d0f90737b616886decb70af3ea5CAS | 18239051PubMed |

Munro, S. K., Farquhar, C. M., Mitchell, M. D., and Ponnampalam, A. P. (2010). Epigenetic regulation of endometrium during the menstrual cycle. Mol. Hum. Reprod. 16, 297–310.
Epigenetic regulation of endometrium during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Gnsr8%3D&md5=920bb4006667ec298dbb6af14d822005CAS | 20139117PubMed |

Nakaya, Y., Kizaki, K., Takahashi, T., Patel, O. V., and Hashizume, K. (2009). The characterization of DNA methylation-mediated regulation of bovine placental lactogen and bovine prolactin-related protein-1 genes. BMC Mol. Biol. 10, 19.
The characterization of DNA methylation-mediated regulation of bovine placental lactogen and bovine prolactin-related protein-1 genes.Crossref | GoogleScholarGoogle Scholar | 19261194PubMed |

Nasu, K., Kawano, Y., Tsukamoto, Y., Takano, M., Takai, N., Li, H., Furukawa, Y., Abe, W., Moriyama, M., and Narahara, H. (2011). Aberrant DNA methylation status of endometriosis: Epigenetics as the pathogenesis, biomarker and therapeutic target. J. Obstet. Gynaecol. Res. 37, 683–695.
Aberrant DNA methylation status of endometriosis: Epigenetics as the pathogenesis, biomarker and therapeutic target.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCgu7zL&md5=58ebf324e84f2869a9231c34179ccf22CAS | 21651673PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=4d47a7fe4598fcf4404eca6bbeda8563CAS | 18239046PubMed |

Nojima, H., Nagaoka, K., Christenson, R. K., Shiota, K., and Imakawa, K. (2004). Increase in DNA methylation downregulates conceptus interferon-tau gene expression. Mol. Reprod. Dev. 67, 396–405.
Increase in DNA methylation downregulates conceptus interferon-tau gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWntbg%3D&md5=75bce3dc3b74e41700331a0a2e6f50a3CAS | 14991730PubMed |

Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001). Implantation and the survival of early pregnancy. N. Engl. J. Med. 345, 1400–1408.
Implantation and the survival of early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1aqu74%3D&md5=9d0bcff6bbe56eb6812d97602ed58f97CAS | 11794174PubMed |

Oliveira, J. F., Henkes, L. E., Ashley, R. L., Purcell, S. H., Smirnova, N. P., Veeramachaneni, D. N., Anthony, R. V., and Hansen, T. R. (2008). Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein. Endocrinology 149, 1252–1259.
Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVaqtL0%3D&md5=aa54bc058c6740d31fa0d4a7cca26b30CAS | 18063687PubMed |

Ott, T. L., and Gifford, C. A. (2010). Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants. Am. J. Reprod. Immunol. 64, 245–254.
Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtrbI&md5=ad37bcd483a57748e71f3bacf05712cbCAS | 20738264PubMed |

Palini, S., De Stefani, S., Scala, V., Dusi, L., and Bulletti, C. (2011). Epigenetic regulatory mechanisms during preimplantation embryo development. Ann. N. Y. Acad. Sci. 1221, 54–60.
Epigenetic regulatory mechanisms during preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWrtL4%3D&md5=d830a131ebcf6fb0d623be44bb202b0fCAS | 21401630PubMed |

Patrizio, P., Bianchi, V., Lalioti, M. D., Gerasimova, T., and Sakkas, D. (2007). High rate of biological loss in assisted reproduction: it is in the seed, not in the soil. Reprod. Biomed. Online 14, 92–95.
High rate of biological loss in assisted reproduction: it is in the seed, not in the soil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2Fht1aguw%3D%3D&md5=80e1b2cc2b0fe015ede23b9badd26bfbCAS | 17207339PubMed |

Purcell, S. H., Cantlon, J. D., Wright, C. D., Henkes, L. E., Seidel, G. E., and Anthony, R. V. (2009). The involvement of proline-rich 15 in early conceptus development in sheep. Biol. Reprod. 81, 1112–1121.
The involvement of proline-rich 15 in early conceptus development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7jP&md5=14805f2a829af23195f7b89f73e85fa6CAS | 19605793PubMed |

Quenby, S., Vince, G., Farquharson, R., and Aplin, J. (2002). Recurrent miscarriage: a defect in nature’s quality control? Hum. Reprod. 17, 1959–1963.
Recurrent miscarriage: a defect in nature’s quality control?Crossref | GoogleScholarGoogle Scholar | 12151421PubMed |

Rahnama, F., Thompson, B., Steiner, M., Shafiei, F., Lobie, P. E., and Mitchell, M. D. (2009). Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 150, 1466–1472.
Epigenetic regulation of E-cadherin controls endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2gtbc%3D&md5=c8b5178edcc33d5dfc36c2534565f3feCAS | 18974268PubMed |

Rasmussen, T. P., and Corry, G. N. (2010). Epigenetic pre-patterning and dynamics during initial stages of mammalian preimplantation development. J. Cell. Physiol. 225, 333–336.
Epigenetic pre-patterning and dynamics during initial stages of mammalian preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVygsr7I&md5=c97724f5bbc39a294c2ea0e46dbcf2a9CAS | 20607796PubMed |

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432.
Stability and flexibility of epigenetic gene regulation in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOgs7w%3D&md5=3b5777853bde54a83bb6aab97ededbe9CAS | 17522676PubMed |

Rizos, D., Carter, F., Besenfelder, U., Havlicek, V., and Lonergan, P. (2010). Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci. 93, 1022–1029.
Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlOjurc%3D&md5=fd7815dcedad679eaaa1a56e43660c61CAS | 20172222PubMed |

Roberts, R. M., Chen, Y., Ezashi, T., and Walker, A. M. (2008). Interferons and the maternal–conceptus dialog in mammals. Semin. Cell Dev. Biol. 19, 170–177.
Interferons and the maternal–conceptus dialog in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGrsrg%3D&md5=93def96710901506d6723e327fe4ee47CAS | 18032074PubMed |

Robl, J. M., Wang, Z., Kasinathan, P., and Kuroiwa, Y. (2007). Transgenic animal production and animal biotechnology. Theriogenology 67, 127–133.
Transgenic animal production and animal biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jisVWhuw%3D%3D&md5=5c3a66a32c4aac821ba46ba987ecf9f2CAS | 17070901PubMed |

Rodde, N., Munaut, C., Prince, S., Olivier, F., Bellemin, A. L., Chaouat, G., and Sandra, O. (2008). In vivo gene delivery of the murine uterus: what and why? Am. J. Reprod. Immunol. 60, 85–89.

Rodriguez-Alvarez, L., and Castro, F. O. (2010). Effect of nucleus transfer on gene expression in bovine embryos during early development. Acta Scientiae Veterinariae. 38, s509–s519.

Sakurai, T., Sakamoto, A., Muroi, Y., Bai, H., Nagaoka, K., Tamura, K., Takahashi, T., Hashizume, K., Sakatani, M., Takahashi, M., Godkin, J. D., and Imakawa, K. (2009). Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol. Reprod. 80, 1223–1231.
Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGmsLs%3D&md5=1b32b03402f92cb85e58a806e29e4aeeCAS | 19211809PubMed |

Salamonsen, L. A., Nie, G., Hannan, N. J., and Dimitriadis, E. (2009). Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity. Reprod. Fertil. Dev. 21, 923–934.
Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVartbfM&md5=f68f3c93e166d298d7ddf22799c72b59CAS | 19698296PubMed |

Salian, S., Doshi, T., and Vanage, G. (2009). Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A. Life Sci. 85, 11–18.
Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFCqu7k%3D&md5=a264d8d69390ae5a64e56137cbcb7a91CAS | 19379760PubMed |

Salilew-Wondim, D., Holker, M., Rings, F., Ghanem, N., Ulas-Cinar, M., Peippo, J., Tholen, E., Looft, C., Schellander, K., and Tesfaye, D. (2010). Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol. Genomics 42, 201–218.
Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleqsrzN&md5=5c62b6b23ac9ecf40fbc5b6c0e798251CAS | 20388838PubMed |

Salker, M., Teklenburg, G., Molokhia, M., Lavery, S., Trew, G., Aojanepong, T., Mardon, H. J., Lokugamage, A. U., Rai, R., Landles, C., Roelen, B. A., Quenby, S., Kuijk, E. W., Kavelaars, A., Heijnen, C. J., Regan, L., Macklon, N. S., and Brosens, J. J. (2010). Natural selection of human embryos: impaired decidualization of endometrium disables embryo–maternal interactions and causes recurrent pregnancy loss. PLoS ONE 5, e10287.
Natural selection of human embryos: impaired decidualization of endometrium disables embryo–maternal interactions and causes recurrent pregnancy loss.Crossref | GoogleScholarGoogle Scholar | 20422017PubMed |

Sandra, O., Bataillon, I., Roux, P., Martal, J., Charpigny, G., Reinaud, P., Bolifraud, P., Germain, G., and Al-Gubory, K. H. (2005). Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe. J. Mol. Endocrinol. 34, 637–644.
Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisr4%3D&md5=03b72b9c299ea17246b907c38843545eCAS | 15956335PubMed |

Santos, F., Peters, A. H., Otte, A. P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236.
Dynamic chromatin modifications characterise the first cell cycle in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1equrY%3D&md5=2e8c46cc521438470b3c07f311934671CAS | 15766761PubMed |

Satterfield, M. C., Bazer, F. W., and Spencer, T. E. (2006). Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75, 289–296.
Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsbo%3D&md5=30d3805fb57044ea41fe547494da71ebCAS | 16707766PubMed |

Satterfield, M. C., Song, G., Kochan, K. J., Riggs, P. K., Simmons, R. M., Elsik, C. G., Adelson, D. L., Bazer, F. W., Zhou, H., and Spencer, T. E. (2009). Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol. Genomics 39, 85–99.
Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt77J&md5=baeb14bea86cc30b786b60c1b2fc0f2cCAS | 19690047PubMed |

Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331.
The molecular foundations of the maternal to zygotic transition in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVOgtLY%3D&md5=25e3cbfa15c2d809afaf95a5842aa4a2CAS | 12206467PubMed |

Shimizu, T., Krebs, S., Bauersachs, S., Blum, H., Wolf, E., and Miyamoto, A. (2010). Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium. Physiol. Genomics 42A, 290–300.
Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslWgsbo%3D&md5=fe374ab89b2f91148579798fc2ae919bCAS | 20876846PubMed |

Sinclair, K. D. (2008). Assisted reproductive technologies and pregnancy outcomes: mechanistic insights from animal studies. Semin. Reprod. Med. 26, 153–161.
Assisted reproductive technologies and pregnancy outcomes: mechanistic insights from animal studies.Crossref | GoogleScholarGoogle Scholar | 18302107PubMed |

Sinclair, K. D., Young, L. E., Wilmut, I., and McEvoy, T. G. (2000). In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum. Reprod. 15, 68–86.
| 11263539PubMed |

Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19 351–19 356.
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=45c1c95e681643cd0c493ccc9f9e424cCAS |

Skinner, M. K., Manikkam, M., and Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol. Metab. 21, 214–222.
Epigenetic transgenerational actions of environmental factors in disease etiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVejtLc%3D&md5=6dc11df88fa0b239925d765802673fe2CAS | 20074974PubMed |

Spencer, T. E., and Bazer, F. W. (2002). Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front Biosci. 7, d1879–d1898.
Biology of progesterone action during pregnancy recognition and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlslygsrg%3D&md5=6a3fcdef2dd864308cb329d3204a8f85CAS | 12161340PubMed |

Spencer, T. E., and Bazer, F. W. (2004). Uterine and placental factors regulating conceptus growth in domestic animals. J. Anim Sci. 82, E4–E13.
| 15471813PubMed |

Spencer, T. E., Hayashi, K., Hu, J., and Carpenter, K. D. (2005). Comparative developmental biology of the mammalian uterus. Curr. Top. Dev. Biol. 68, 85–122.
Comparative developmental biology of the mammalian uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtr7M&md5=4d71066113bc147f89a2841cca658fb8CAS | 16124997PubMed |

Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65–78.
Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FN&md5=32b9e8aa2ae697d444b5000e4137e57eCAS | 17389136PubMed |

Spencer, T. E., Sandra, O., and Wolf, E. (2008). Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135, 165–179.
Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL4%3D&md5=221ea9d1418b824202c32d4d377bf676CAS | 18239047PubMed |

Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.
Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGmtLc%3D&md5=8c66a38533026ca7ec256012da0721e3CAS | 1522892PubMed |

Szczepanska, M., Wirstlein, P., Luczak, M., Jagodzinski, P. P., and Skrzypczak, J. (2010). Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed. Pharmacother. 64, 697–705.
Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamtbfI&md5=24cb02b69af08ab4547544553faa890dCAS | 20971605PubMed |

Tekin, S., and Hansen, P. J. (2004). Regulation of numbers of macrophages in the endometrium of the sheep by systemic effects of pregnancy, local presence of the conceptus, and progesterone. Am. J. Reprod. Immunol. 51, 56–62.
Regulation of numbers of macrophages in the endometrium of the sheep by systemic effects of pregnancy, local presence of the conceptus, and progesterone.Crossref | GoogleScholarGoogle Scholar | 14870714PubMed |

Teklenburg, G., Salker, M., Molokhia, M., Lavery, S., Trew, G., Aojanepong, T., Mardon, H. J., Lokugamage, A. U., Rai, R., Landles, C., Roelen, B. A., Quenby, S., Kuijk, E. W., Kavelaars, A., Heijnen, C. J., Regan, L., Brosens, J. J., and Macklon, N. S. (2010). Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS ONE 5, e10258.
Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation.Crossref | GoogleScholarGoogle Scholar | 20422011PubMed |

Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Transition from maternal to embryonic control in early mammalian development: a comparison of several species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=9fba85bb0339b45b5570cc49f8f79f96CAS | 2189447PubMed |

Telugu, B. P., Ezashi, T., and Roberts, R. M. (2010). The promise of the stem cells research in pigs and other ungulate species. Stem Cell Rev. 6, 31–41.
The promise of the stem cells research in pigs and other ungulate species.Crossref | GoogleScholarGoogle Scholar | 19949895PubMed |

Vincent, Z. L., Farquhar, C. M., Mitchell, M. D., and Ponnampalam, A. P. (2011). Expression and regulation of DNA methyltransferases in human endometrium. Fertil. Steril. 95, 1522–1525.e1.
Expression and regulation of DNA methyltransferases in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1CktLc%3D&md5=466152ea1a054bf360db8e2900629982CAS | 20970125PubMed |

Walker, C. G., Meier, S., Littlejohn, M. D., Lehnert, K., Roche, J. R., and Mitchell, M. D. (2010). Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11, 474.
Modulation of the maternal immune system by the pre-implantation embryo.Crossref | GoogleScholarGoogle Scholar | 20707927PubMed |

Wang, H., and Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199.
Roadmap to embryo implantation: clues from mouse models.Crossref | GoogleScholarGoogle Scholar | 16485018PubMed |

Watkins, A. J., Ursell, E., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., Wilkins, A., Perry, V. H., Sheth, B., Kwong, W. Y., Eckert, J. J., Wild, A. E., Hanson, M. A., Osmond, C., and Fleming, T. P. (2008). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306.
Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru7c%3D&md5=bd38670dd54fbf0a612ae7c2cbb0792dCAS | 17989357PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241..
| 21407207PubMed |

Whyte, J. J., Zhao, J., Wells, K. D., Samuel, M. S., Whitworth, K. M., Walters, E. M., Laughlin, M. H., and Prather, R. S. (2011). Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol. Reprod. Dev. 78, 2.
Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvV2lsw%3D%3D&md5=d59748fc47d153cced6c5b23aeb9e90eCAS | 21268178PubMed |

Wilmut, I., and Sales, D. I. (1981). Effect of an asynchronous environment on embryonic development in sheep. J. Reprod. Fertil. 61, 179–184.
Effect of an asynchronous environment on embryonic development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2Fps1Cgtg%3D%3D&md5=f58ce1e7c23deca8db1ed7c2c94669a1CAS | 7452614PubMed |

Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktro%3D&md5=3633990ec05d5078e6f8878ff8abfd1eCAS | 17325680PubMed |

Zama, A. M., and Uzumcu, M. (2010). Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front. Neuroendocrinol. 31, 420–439.
Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleqt7jJ&md5=1a3948479823a9f08ea88c0479a1e4f6CAS | 20609371PubMed |