Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The inhibitory effect of progesterone on lactogenesis during pregnancy is already evident by mid- to late gestation in rodents

Constanza M. López-Fontana A , María E. Maselli A , Ana M. Salicioni B and Rubén W. Carón A C
+ Author Affiliations
- Author Affiliations

A Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.

B Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, USA.

C Corresponding author. Email: rcaron@mendoza-conicet.gob.ar

Reproduction, Fertility and Development 24(5) 704-714 https://doi.org/10.1071/RD11160
Submitted: 17 June 2011  Accepted: 18 October 2011   Published: 5 December 2011

Abstract

Lactogenesis is a very complex process highly dependent on hormonal regulation. In the present study the time-course of the inhibitory actions of progesterone on prolactin secretion, mammary gland morphology and lactogenesis from mid- to late gestation in rodents was investigated. Groups of pregnant rats were luteectomised or administered with mifepristone on Day 10, 13, 15 or 17 of gestation and decapitated 28 or 48 h later. Whole-blood samples and the inguinal mammary glands were taken for determinations of hormone levels and for measurement of mammary content of casein and lactose and for tissue morphology analyses, respectively. Luteectomy or mifepristone evoked prolactin increases only after Day 17 of gestation. Mammary content of casein was increased by both treatments regardless of timing or duration. Mifepristone was less effective than luteectomy in inducing lactose production and the effect was only observed after Day 15 of gestation. Analysis of mammary gland morphology confirmed the observed effect of progesterone on lactogenesis. Both treatments triggered remarkable secretory activity in the mammary gland, even without a parallel epithelial proliferation, demonstrating that the mammary epithelium is able to synthesise milk compounds long before its full lobulo–alveolar development is achieved, provided that progesterone action is abolished. Thus, the present study demonstrates that progesterone is a potent hormonal switch for the prolactin and prolactin-like effects on mammary gland development and its milk-synthesising capacity during pregnancy, and that its inhibitory action is already evident by mid-pregnancy in rodents.

Additional keywords: corpus luteum, lactation, mammary gland.


References

Anderson, S. M., Rudolph, M. C., McManaman, J. L., and Neville, M. C. (2007). Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res. 9, 204–218.
Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis!Crossref | GoogleScholarGoogle Scholar | 17338830PubMed |

Attardi, B. J., Burgenson, J., Hild, S. A., and Reel, J. R. (2004). In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124 and mifepristone. J. Steroid Biochem. Mol. Biol. 88, 277–288.
In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124 and mifepristone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1eru7k%3D&md5=8ca37b88596377a32b25e94db7507171CAS | 15120421PubMed |

Aupperlee, M. D., Smith, K. T., Kariagina, A., and Haslam, S. Z. (2005). Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development. Endocrinology 146, 3577–3588.
Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVaiu7g%3D&md5=f103d4dc58f0ff3fabb5af1ec1d731a5CAS | 15878961PubMed |

Bridges, R. S. (1984). A quantitative analysis of the roles of dosage, sequence and duration of oestradiol and progesterone exposure in the regulation of maternal behaviour in the rat. Endocrinology 114, 930–940.
A quantitative analysis of the roles of dosage, sequence and duration of oestradiol and progesterone exposure in the regulation of maternal behaviour in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtlakurg%3D&md5=44b297ca70b66309fbd6d5641f13a481CAS | 6697968PubMed |

Brisken, C., Kaur, S., Chavarria, T. E., Binart, N., Sutherland, R. L., Weinberg, R. A., Kelly, P. A., and Ormandy, C. J. (1999). Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol. 210, 96–106.
Prolactin controls mammary gland development via direct and indirect mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Gntro%3D&md5=36eccd8637538dc0e8a32aedda31e641CAS | 10364430PubMed |

Bussmann, L. E., and Deis, R. P. (1979). Studies concerning the hormonal induction of lactogenesis by prostaglandin F2 alpha in pregnant rats. J. Steroid Biochem. 11, 1485–1489.
Studies concerning the hormonal induction of lactogenesis by prostaglandin F2 alpha in pregnant rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlt1ehug%3D%3D&md5=18df064db410a63d3049b66e486bdf45CAS | 229355PubMed |

Bussmann, L. E., and Deis, R. P. (1984). Gamma-glutamyltransferase activity in mammary gland of pregnant rats and its regulation by ovarian hormones, prolactin and placental lactogen. Biochem. J. 223, 275–277.
| 1:CAS:528:DyaL2cXlvVCgt74%3D&md5=b0982bea5710bdff6116241ed2bef7caCAS | 6149746PubMed |

Bussmann, L. E., and Deis, R. P. (1985). Hormonal regulation of casein synthesis at the end of pregnancy. Mol. Cell. Endocrinol. 39, 115–118.
Hormonal regulation of casein synthesis at the end of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtVKlsrw%3D&md5=a8a74aed11231344e66e9793f412e7caCAS | 3979661PubMed |

Bussmann, L. E., Koninckx, A., and Deis, R. P. (1983). Effect of oestrogen and placental lactogen on lactogenesis in pregnant rats. Biol. Reprod. 29, 535–541.
Effect of oestrogen and placental lactogen on lactogenesis in pregnant rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXls12qsL8%3D&md5=20b071fa2835dfe30baaa54255d719daCAS | 6414540PubMed |

Caron, R. W., Jahn, G. A., and Deis, R. P. (1994). Lactogenic actions of different growth hormone preparations in pregnant and lactating rats. J. Endocrinol. 142, 535–545.
Lactogenic actions of different growth hormone preparations in pregnant and lactating rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFKnsr0%3D&md5=937da81c09c151acd320725a40191ec8CAS | 7964304PubMed |

Caron, R. W., Salicioni, A. M., and Deis, R. P. (1994). Mifepristone treatment demonstrates the participation of adrenal glucocorticoids in the regulation of oestrogen-induced prolactin secretion in ovariectomized rats. J. Steroid Biochem. Mol. Biol. 48, 385–389.
Mifepristone treatment demonstrates the participation of adrenal glucocorticoids in the regulation of oestrogen-induced prolactin secretion in ovariectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlKntLk%3D&md5=1ea3c194754ff8ae62b913d6302b63f6CAS | 8142316PubMed |

Deis, R. P. (1968). Oxytocin test to demonstrate the initiation and end of lactation in rats. J. Endocrinol. 40, 133–134.
Oxytocin test to demonstrate the initiation and end of lactation in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c%2Fpslyisg%3D%3D&md5=be60cff01de3b2582785647a35de77e6CAS | 5635099PubMed |

Deis, R. P., Carrizo, D. G., and Jahn, G. A. (1989). Suckling-induced prolactin release potentiates mifepristone-induced lactogenesis in pregnant rats. J. Reprod. Fertil. 87, 147–153.
Suckling-induced prolactin release potentiates mifepristone-induced lactogenesis in pregnant rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXls1OktrY%3D&md5=c34e5f3759851cf34b530fbdb843bd04CAS | 2621690PubMed |

Fielder, P. J., Thordarson, G., English, A., Rosenfeld, R. G., and Talamantes, F. (1992). Expression of a lactogen-dependent insulin-like growth factor-binding protein in cultured mouse mammary epithelial cells. Endocrinology 131, 261–267.
Expression of a lactogen-dependent insulin-like growth factor-binding protein in cultured mouse mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVCiu7Y%3D&md5=79b219306f28a8138616b6338d8ec8c9CAS | 1377124PubMed |

Forsyth, I. A. (1994). Comparative aspects of placental lactogens: structure and function. Exp. Clin. Endocrinol. 102, 244–251.
Comparative aspects of placental lactogens: structure and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFGqtbs%3D&md5=226c43c2b069657ae9276df79fe18ebeCAS | 7995346PubMed |

Ganguly, R., Majumder, P. K., Ganguly, N., and Banerjee, M. R. (1982). The mechanism of progesterone–glucocorticoid interaction in regulation of casein gene expression. J. Biol. Chem. 257, 2182–2187.
| 1:CAS:528:DyaL38XhtlKhtbw%3D&md5=5e5c04fce19b0b2dff5889512cc91e8bCAS | 7037763PubMed |

Grattan, D. R., and Averill, R. L. (1990). Effect of ovarian steroids on a nocturnal surge of prolactin secretion that precedes parturition in the rat. Endocrinology 126, 1199–1205.
Effect of ovarian steroids on a nocturnal surge of prolactin secretion that precedes parturition in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtFahu7o%3D&md5=850961d3888a0500df09a506eb76678cCAS | 2298160PubMed |

Grattan, D. R., and Averill, R. L. (1992). Neurohormonal factors involved in the control of the nocturnal prolactin surge that precedes parturition in the rat. J. Neuroendocrinol. 4, 167–172.
Neurohormonal factors involved in the control of the nocturnal prolactin surge that precedes parturition in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVyqsbo%3D&md5=28eba1ad0db47ec823e342580b3f28afCAS | 21554593PubMed |

Grattan, D. R., and Averill, R. L. (1995). Absence of short-loop autoregulation of prolactin during late pregnancy in the rat. Brain Res. Bull. 36, 413–416.
Absence of short-loop autoregulation of prolactin during late pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvVKmurs%3D&md5=5fdfc2058374ce3cae9e999c618b112fCAS | 7712202PubMed |

Haslam, S. Z., and Shyamala, G. (1980). Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation. J. Cell Biol. 86, 730–737.
Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1Wmt70%3D&md5=ca62efcfb43f6ef27a737727d0197484CAS | 7410476PubMed |

Haslam, S. Z., and Shyamala, G. (1981). Relative distribution of oestrogen and progesterone receptors among the epithelial, adipose and connective tissue components of the normal mammary gland. Endocrinology 108, 825–830.
Relative distribution of oestrogen and progesterone receptors among the epithelial, adipose and connective tissue components of the normal mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlaks7w%3D&md5=2f85099fbf18b02db550b25cd54611e8CAS | 7460844PubMed |

Jahn, G. A., and Deis, R. P. (1991). Involvement of the adrenergic system on the release of prolactin and lactogenesis at the end of pregnancy in the rat. J. Endocrinol. 129, 343–350.
Involvement of the adrenergic system on the release of prolactin and lactogenesis at the end of pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVWmtr0%3D&md5=dfd9e415e524797fa7ed4854d4925830CAS | 2066692PubMed |

Jahn, G. A., Alonso, N., and Deis, R. P. (1986). Ovarian and feto–placental factors and the regulation of prolactin release during pregnancy in the rat. J. Reprod. Fertil. 77, 125–133.
Ovarian and feto–placental factors and the regulation of prolactin release during pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktFyqtLk%3D&md5=09189481aa7c1d13cb988bda311655ecCAS | 3723463PubMed |

Jahn, G. A., Houdebine, L. M., and Djiane, J. (1987). Antiprogesterone and antiglucocorticoid actions of RU 486 on rabbit mammary gland explant cultures. Evidence for a persistent inhibitory action of residual progesterone upon the mammary tissue. J. Steroid Biochem. 28, 371–377.
Antiprogesterone and antiglucocorticoid actions of RU 486 on rabbit mammary gland explant cultures. Evidence for a persistent inhibitory action of residual progesterone upon the mammary tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFajtb4%3D&md5=fc6bda413b9f364c4316e5fe7b743698CAS | 3669658PubMed |

Kawano, T., Okamura, H., Tajima, C., Fukuma, K., and Katabuchi, H. (1988). Effect of RU 486 on luteal function in the early pregnant rat. J. Reprod. Fertil. 83, 279–285.
Effect of RU 486 on luteal function in the early pregnant rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlagt7k%3D&md5=00fbd427a1aac47d1df8059346cdf976CAS | 3165130PubMed |

Kuhn, N. J. (1969). Progesterone withdrawal as the lactogenic trigger in the rat. J. Endocrinol. 44, 39–54.
Progesterone withdrawal as the lactogenic trigger in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtFejur4%3D&md5=1edd1b2aaafba0de19d1aec2d9336cacCAS | 5814248PubMed |

Kuhn, N. J., and Lowenstein, J. M. (1967). Lactogenesis in the rat. Changes in metabolic parameters at parturition. Biochem. J. 105, 995–1002.
| 1:CAS:528:DyaF1cXitVaisw%3D%3D&md5=c3fb27ceaaa3b4d3ffff12fd52fcc08cCAS | 16742576PubMed |

Kuhn, N. J., Carrick, D. T., and Wilde, C. J. (1980). Lactose synthesis: the possibilities of regulation. J. Dairy Sci. 63, 328–336.
Lactose synthesis: the possibilities of regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhs1Wjtro%3D&md5=91c7d5b2e4d244f06a821d5c0630a03dCAS | 6766957PubMed |

Levay-Young, B. K., Hamamoto, S., Imagawa, W., and Nandi, S. (1990). Casein accumulation in mouse mammary epithelial cells after growth stimulated by different hormonal and nonhormonal agents. Endocrinology 126, 1173–1182.
Casein accumulation in mouse mammary epithelial cells after growth stimulated by different hormonal and nonhormonal agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtFKnsbo%3D&md5=c42cd0801175c64ffba3a2618ceed130CAS | 2298158PubMed |

Lkhider, M., Delpal, S., Le Provost, F., and Ollivier-Bousquet, M. (1997). Rat prolactin synthesis by lactating mammary epithelial cells. FEBS Lett. 401, 117–122.
Rat prolactin synthesis by lactating mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVGnsg%3D%3D&md5=9cd3f20873853bc7bcf892f75c494071CAS | 9013870PubMed |

Neville, M. C., McFadden, T. B., and Forsyth, I. (2002). Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland Biol. Neoplasia 7, 49–66.
Hormonal regulation of mammary differentiation and milk secretion.Crossref | GoogleScholarGoogle Scholar | 12160086PubMed |

Nishikawa, S., Moore, R. C., Nonomura, N., and Oka, T. (1994). Progesterone and EGF inhibit mouse mammary gland prolactin receptor and beta-casein gene expression. Am. J. Physiol. 267, C1467–C1472.
| 1:CAS:528:DyaK2cXmvFejurg%3D&md5=cc6af3450c988d33c3753ea99690fa29CAS | 7977707PubMed |

Oakes, S. R., Rogers, R. L., Naylor, M. J., and Ormandy, C. J. (2008). Prolactin regulation of mammary gland development. J. Mammary Gland Biol. Neoplasia 13, 13–28.
Prolactin regulation of mammary gland development.Crossref | GoogleScholarGoogle Scholar | 18219564PubMed |

Quirk, S. J., Gannell, J. E., and Funder, J. W. (1982). Progesterone receptors in mammary gland of the pregnant rat. Endocrinology 111, 1883–1890.
Progesterone receptors in mammary gland of the pregnant rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslWmuw%3D%3D&md5=6c1b223f482d56e92b2a6250b548aaf4CAS | 6890439PubMed |

Quirk, S. J., Gannell, J. E., and Funder, J. W. (1986). Adrenocorticoid-dependent alpha-lactalbumin synthesis in rat mammary gland explants: antagonist studies. Clin. Exp. Pharmacol. Physiol. 13, 233–239.
Adrenocorticoid-dependent alpha-lactalbumin synthesis in rat mammary gland explants: antagonist studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktlGrtLw%3D&md5=c67ecb5e200e9373c7d9c279687ade26CAS | 3720022PubMed |

Rosen, J. M., O’Neal, D. L., McHugh, J. E., and Comstock, J. P. (1978). Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry 17, 290–297.
Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFGmsb8%3D&md5=9e2d306a360a494ac7c8cdf4910ea8daCAS | 619992PubMed |

Rosenblatt, J. S., Mayer, A. D., and Giordano, A. L. (1988). Hormonal basis during pregnancy for the onset of maternal behaviour in the rat. Psychoneuroendocrinology 13, 29–46 [Review].
Hormonal basis during pregnancy for the onset of maternal behaviour in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFynt7k%3D&md5=2eade0e507213a55d90d077ff2c6f767CAS | 2967517PubMed |

Rosenblatt, J. S., Olufowobi, A., and Siegel, H. I. (1998). Effects of pregnancy hormones on maternal responsiveness, responsiveness to oestrogen stimulation of maternal behaviour and the lordosis response to oestrogen stimulation. Horm. Behav. 33, 104–114.
Effects of pregnancy hormones on maternal responsiveness, responsiveness to oestrogen stimulation of maternal behaviour and the lordosis response to oestrogen stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlChu7o%3D&md5=7d05cb5005a854a1a64f4a04a904f078CAS | 9647936PubMed |

Russo, J., and Russo, I. H. (2008). Breast development, hormones and cancer. Adv. Exp. Med. Biol. 630, 52–56.
Breast development, hormones and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKisLbN&md5=e67099802dc5572012f0b6fc6411dbd3CAS | 18637484PubMed |

Salicioni, A. M., Caron, R. W., and Deis, R. P. (1993). Adrenal progesterone facilitates the negative feedback of oestrogen on LH release in ovariectomized rats. J. Endocrinol. 139, 253–258.
Adrenal progesterone facilitates the negative feedback of oestrogen on LH release in ovariectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1ahsQ%3D%3D&md5=3be8568ddd644131c8d29ca221a9ed0fCAS | 8308461PubMed |

Shi, W. L., and Zhu, P. D. (1990). Autoradiographic localization of [3H]RU 486 and [3H]progesterone in the uterus, pituitary and hypothalamus of the rat. Hum. Reprod. 5, 505–509.
| 1:CAS:528:DyaK3MXktVWjsrw%3D&md5=47198205f3fff9a64888a326e2ba52b6CAS | 2394783PubMed |

Siegel, H. I. (1986). Hormonal basis of maternal behaviour in the rat. Ann. N. Y. Acad. Sci. 474, 202–215 [Review].
Hormonal basis of maternal behaviour in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvV2it74%3D&md5=b9192e991c9e5e93ae950c27971dcf6cCAS | 3555222PubMed |

Soaje, M., and Deis, R. P. (1997). Opioidergic regulation of prolactin secretion during pregnancy: role of ovarian hormones. J. Endocrinol. 155, 99–106.
Opioidergic regulation of prolactin secretion during pregnancy: role of ovarian hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsV2iu7g%3D&md5=d7d10e568b2a9c5a085e6da29c6ce602CAS | 9390012PubMed |

Soaje, M., de Di Nasso, E. G., and Deis, R. P. (2002). Regulation by endogenous opioids of suckling-induced prolactin secretion in pregnant and lactating rats: role of ovarian steroids. J. Endocrinol. 172, 255–261.
Regulation by endogenous opioids of suckling-induced prolactin secretion in pregnant and lactating rats: role of ovarian steroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVejt7o%3D&md5=b153f76c2dad6a3e6069b58a1853bf7aCAS | 11834443PubMed |

Soaje, M., Valdez, S., Bregonzio, C., Penissi, A., and Deis, R. P. (2006). Dopaminergic mechanisms involved in prolactin release after mifepristone and naloxone treatment during late pregnancy in the rat. Neuroendocrinology 84, 58–67.
Dopaminergic mechanisms involved in prolactin release after mifepristone and naloxone treatment during late pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnur3E&md5=90cf90a66edc37fdd7e2d92f1f5550deCAS | 17090971PubMed |

Stocco, C. O., Chedrese, J., and Deis, R. P. (2001). Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol. Reprod. 65, 1114–1119.
Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cms78%3D&md5=c4e8484ac5394b1bfdbcda00f5f8e9b6CAS | 11566732PubMed |

Telleria, C. M., and Deis, R. P. (1994). Effect of RU486 on ovarian progesterone production at pro- oestrus and during pregnancy: a possible dual regulation of the biosynthesis of progesterone. J. Reprod. Fertil. 102, 379–384.
Effect of RU486 on ovarian progesterone production at pro- oestrus and during pregnancy: a possible dual regulation of the biosynthesis of progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFyns7o%3D&md5=4bde52e854b16559b23c73b3b31c8026CAS | 7861391PubMed |

Telleria, C. M., Stocco, C. O., and Deis, R. P. (1995). Luteolytic action of RU486: modulation of luteal 3 beta-hydroxysteroid dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase activities in late pregnant rats. Journal of Steroid Biochemistry & Mol. Biol. 52, 567–573.
| 1:CAS:528:DyaK2MXmsFSqurw%3D&md5=3c86f25d38b3ddfad1d68d6a3e673363CAS |

Telleria, C. M., Goyeneche, A. A., Cavicchia, J. C., Stati, A. O., and Deis, R. P. (2001). Apoptosis induced by antigestagen RU486 in rat corpus luteum of pregnancy. Endocrine 15, 147–156.
Apoptosis induced by antigestagen RU486 in rat corpus luteum of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVSrtLk%3D&md5=0f825a5b5fcc28d9cad7322506738351CAS | 11720240PubMed |

Terkel, J., Witcher, J. A., and Adler, N. T. (1990). Evidence for “memory” of cervical stimulation for the promotion of pregnancy in rats. Horm. Behav. 24, 40–49.
Evidence for “memory” of cervical stimulation for the promotion of pregnancy in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3ivV2gsQ%3D%3D&md5=ee08e37622aafe07849779abc8c2b9dbCAS | 2328968PubMed |

Topper, Y. J., and Freeman, C. S. (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60, 1049–1106.
| 1:CAS:528:DyaL3cXmtlGksLk%3D&md5=54a1df4d071aca81be3935f70cbea8e9CAS | 7001510PubMed |

Vermouth, N. T., and Deis, R. P. (1974). Prolactin release and lactogenesis after ovariectomy in pregnant rats: effect of ovarian hormones. J. Endocrinol. 63, 13–20.
Prolactin release and lactogenesis after ovariectomy in pregnant rats: effect of ovarian hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXntFSisA%3D%3D&md5=05719e75c869c016ae772da0fd6bafb2CAS | 4417566PubMed |

Vermouth, N. T., and Deis, R. P. (1975). Inhibitory effect of progesterone on the lactogenic and abortive action of prostaglandin F2alpha. J. Endocrinol. 66, 21–29.
Inhibitory effect of progesterone on the lactogenic and abortive action of prostaglandin F2alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlt1KltLk%3D&md5=a4494d96af3a84949cf501b538ad4411CAS | 1165437PubMed |

Wlodek, M. E., Ceranic, V., O’Dowd, R., Westcott, K. T., and Siebel, A. L. (2009). Maternal progesterone treatment rescues the mammary impairment following uteroplacental insufficiency and improves postnatal pup growth in the rat. Reprod. Sci. 16, 380–390.
Maternal progesterone treatment rescues the mammary impairment following uteroplacental insufficiency and improves postnatal pup growth in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWmu78%3D&md5=94f4e2b7231fa0efb4a5f45fe037b480CAS | 19164478PubMed |