Fluctuations in total antioxidant capacity, catalase activity and hydrogen peroxide levels of follicular fluid during bovine folliculogenesis
Sajal Gupta A , Audrey Choi A B , Hope Y. Yu C , Suzanne M. Czerniak C , Emily A. Holick C , Louis J. Paolella C , Ashok Agarwal A and Catherine M. H. Combelles C DA Center for Reproductive Medicine, Obstetrics & Gynecology and Women’s Health Institute, Glickman Urological & Kidney Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk A19.1, Cleveland, OH 44195, USA.
B Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
C Department of Biology, Middlebury College, McCardell Bicentennial Hall 346, Middlebury, VT 05753, USA.
D Corresponding author. Email: ccombell@middlebury.edu
Reproduction, Fertility and Development 23(5) 673-680 https://doi.org/10.1071/RD10270
Submitted: 19 October 2010 Accepted: 22 December 2010 Published: 17 May 2011
Abstract
Follicular fluid is an important environment for oocyte development, yet current knowledge regarding its in vivo oxidant and antioxidant levels remains limited. Examining follicular fluid oxidants and antioxidants will improve understanding of their changes in vivo and contribute to optimisation of in vitro maturation conditions. The aim of the present study was to consider selected markers, namely catalase (CAT) enzyme activity, total antioxidant capacity (TAC) and hydrogen peroxide (H2O2) in follicular fluid samples (n = 503) originating from bovine antral follicles. The dynamic changes in two relevant antioxidant measures and one reactive oxygen species (ROS) were measured through stages of bovine follicular development and the oestrous cycle. CAT activity and H2O2 levels decreased significantly as follicle size increased, whereas TAC increased significantly as follicle size increased. Lower TAC and higher H2O2 in small follicles suggest increased ROS in the initial stages of folliculogenesis. Because CAT levels are highest in the follicular fluid of small follicles in the setting of an overall low TAC, CAT may represent a dominant antioxidant defence in the initial stages of folliculogenesis. Future studies must focus on other reactive oxygen species and their various scavenger types during antral folliculogenesis.
Additional keywords: antioxidant, follicle size, oestrous stage, oocyte development, reactive oxygen species.
References
Agarwal, A., and Allamaneni, S. S. (2004). Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online 9, 338–347.| Role of free radicals in female reproductive diseases and assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFWrtLc%3D&md5=a193d4efebd5769f290c49abc7bf7dccCAS | 15353087PubMed |
Angelucci, S., Ciavardelli, D., Di Giuseppe, F., Eleuterio, E., Sulpizio, M., Tiboni, G. M., Giampietro, F., Palumbo, P., and Di Ilio, C. (2006). Proteome analysis of human follicular fluid. Biochim. Biophys. Acta 1764, 1775–1785.
| 1:CAS:528:DC%2BD28Xht1Sjs7zI&md5=ff85456dc50f82e812d0805f33f962d0CAS | 17067859PubMed |
Attaran, M., Pasqualotto, E., Falcone, T., Goldberg, J. M., Miller, K. F., Agarwal, A., and Sharma, R. K. (2000). The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int. J. Fertil. Womens Med. 45, 314–320.
| 1:CAS:528:DC%2BD3cXosVSgsb4%3D&md5=d2d82bc3f7b440c4388de0cd3db5764eCAS | 11092702PubMed |
Baerwald, A. R., Adams, G. P., and Pierson, R. A. (2003). A new model for ovarian follicular development during the human menstrual cycle. Fertil. Steril. 80, 116–122.
| A new model for ovarian follicular development during the human menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 12849812PubMed |
Basini, G., Simona, B., Santini, S. E., and Grasselli, F. (2008). Reactive oxygen species and anti-oxidant defences in swine follicular fluids. Reprod. Fertil. Dev. 20, 269–274.
| Reactive oxygen species and anti-oxidant defences in swine follicular fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislyquro%3D&md5=f690c2562099c3bc25649d1ca495697aCAS | 18255016PubMed |
Bertout, J., Mahutte, N. G., Preston, S. L., and Behrman, H. R. (2004) Reactive oxygen species and ovarian function. In ‘The Ovary’. (Eds P. Leung and E. Y. Adashi.) pp. 353–368. (Elsevier Academic Press: San Diego.)
Blondin, P., Coenen, K., and Sirard, M. A. (1997). The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J. Androl. 18, 454–460.
| 1:CAS:528:DyaK2sXmtVGisL8%3D&md5=6e9426da2053fe61836ee2d3fbff533fCAS | 9283960PubMed |
Campbell, B. K., Souza, C., Gonj, J., Webb, R., Kendall, N., Marsters, P., Robinson, G., Mitchell, A., Telfer, E. E., and Baird, D. T. (2003). Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reprod. Suppl. 61, 429–443.
| 1:CAS:528:DC%2BD3sXptFKhtrc%3D&md5=02d844499d08031298ff0fb5aa209d50CAS | 14635953PubMed |
Carbone, M. C., Tatone, C., Delle Monache, S., Marci, R., Caserta, D., Colonna, R., and Amicarelli, F. (2003). Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Mol. Hum. Reprod. 9, 639–643.
| Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVerurY%3D&md5=c77647151c067d824d7685e723337226CAS | 14561807PubMed |
Combelles, C. M., Gupta, S., and Agarwal, A. (2009). Could oxidative stress influence the in vitro maturation of oocytes? Reprod. Biomed. Online 18, 864–880.
| Could oxidative stress influence the in vitro maturation of oocytes?Crossref | GoogleScholarGoogle Scholar | 19490793PubMed |
Combelles, C. M., Holick, E. A., Paolella, L. J., Walker, D. C., and Wu, Q. (2010). Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles. Reproduction 139, 871–881.
| Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLk%3D&md5=346f027c6694fd648d06439cd6ccb0d5CAS | 20197373PubMed |
Das, S., Chattopadhyay, R., Ghosh, S., Ghosh, S., Goswami, S. K., Chakravarty, B. N., and Chaudhury, K. (2006). Reactive oxygen species level in follicular fluid – embryo quality marker in IVF? Hum. Reprod. 21, 2403–2407.
| Reactive oxygen species level in follicular fluid – embryo quality marker in IVF?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWlt7rK&md5=4373d4d0ba098deb425b511c3059f48fCAS | 16861701PubMed |
El Mouatassim, S., Guerin, P., and Menezo, Y. (1999). Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 5, 720–725.
| Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzlt1Cnsg%3D%3D&md5=7457a1a8e9b04daed3ce3cdd33818c1fCAS | 10421798PubMed |
Goud, A. P., Goud, P. T., Diamond, M. P., Gonik, B., and Abu-Soud, H. M. (2008). Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44, 1295–1304.
| Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktV2gtr4%3D&md5=6962fcac62947a8be0bb6721e31bb8cfCAS | 18177745PubMed |
Guerin, P., El Mouatassim, S., and Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
| Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFyms7c%3D&md5=bcb86cd7a9759b14204012a3cb4655b5CAS | 11284661PubMed |
Hagemann, L. J. (1999). Influence of the dominant follicle on oocytes from subordinate follicles. Theriogenology 51, 449–459.
| Influence of the dominant follicle on oocytes from subordinate follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1SjsQ%3D%3D&md5=b1b5451e4df749adb53d508d90a1019aCAS | 10729104PubMed |
Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine oestrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
| Accuracy of predicting stages of bovine oestrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ot1yjsg%3D%3D&md5=472b4aa4964bd9624773c4de6d6a030bCAS | 7372895PubMed |
Ireland, J. J., Mihm, M., Austin, E., Diskin, M. G., and Roche, J. F. (2000). Historical perspective of turnover of dominant follicles during the bovine oestrous cycle: key concepts, studies, advancements and terms. J. Dairy Sci. 83, 1648–1658.
| Historical perspective of turnover of dominant follicles during the bovine oestrous cycle: key concepts, studies, advancements and terms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVGgtbg%3D&md5=e21d46684b5bae646a8c03842e6adbddCAS | 10908068PubMed |
Kruip, T. A., and Dieleman, S. J. (1982). Macroscopic evaluation of bovine follicles and its validation by micromorphological and steroid biochemical procedures. Reprod. Nutr. Dev. 22, 465–473.
| Macroscopic evaluation of bovine follicles and its validation by micromorphological and steroid biochemical procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks1KlsLc%3D&md5=86b6382cf052dde82622dd0daf0cbc2eCAS | 6891491PubMed |
Lequarre, A. S., Vigneron, C., Ribaucour, F., Holm, P., Donnay, I., Dalbies-Tran, R., Callesen, H., and Mermillod, P. (2005). Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 63, 841–859.
| Influence of antral follicle size on oocyte characteristics and embryo development in the bovine.Crossref | GoogleScholarGoogle Scholar | 15629802PubMed |
Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization and culture in vitro. Mol. Reprod. Dev. 37, 48–53.
| Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization and culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ns1Wltw%3D%3D&md5=c879c9ea381675503aef9aedc3486090CAS | 8129930PubMed |
Lonergan, P., Gutierrez-Adan, A., Rizos, D., Pintado, B., de la Fuente, J.,, and Boland, M. P. (2003). Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol. Reprod. Dev. 66, 297–305.
| Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOgtrY%3D&md5=6ddc95a04f17cb2f5e73bf2c5851b120CAS | 14502609PubMed |
Lopes, S., Jurisicova, A., Sun, J. G., and Casper, R. F. (1998). Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13, 896–900.
| Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gtbo%3D&md5=156b622124f84cbcb7c7753db4bba221CAS | 9619544PubMed |
Machatkova, M., Krausova, K., Jokesova, E., and Tomanek, M. (2004). Developmental competence of bovine oocytes: effects of follicle size and the phase of follicular wave on in vitro embryo production. Theriogenology 61, 329–335.
| Developmental competence of bovine oocytes: effects of follicle size and the phase of follicular wave on in vitro embryo production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srot12itQ%3D%3D&md5=28c4917acbc00301951166126df49182CAS | 14662132PubMed |
Malhi, P. S., Adams, G. P., and Singh, J. (2005). Bovine model for the study of reproductive aging in women: follicular, luteal and endocrine characteristics. Biol. Reprod. 73, 45–53.
| Bovine model for the study of reproductive aging in women: follicular, luteal and endocrine characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srtrg%3D&md5=3417769302df0bf21d8ac7fd03cb49ebCAS | 15744017PubMed |
Pasqualotto, E. B., Agarwal, A., Sharma, R. K., Izzo, V. M., Pinotti, J. A., Joshi, N. J., and Rose, B. I. (2004). Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil. Steril. 81, 973–976.
| Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFCrtrc%3D&md5=f1fd02c046c100784343275c02f26055CAS | 15066450PubMed |
Pasqualotto, E. B., Lara, L. V., Salvador, M., Sobreiro, B. P., Borges, E.,, and Pasqualotto, F. F. (2009). The role of enzymatic antioxidants detected in the follicular fluid and semen of infertile couples undergoing assisted reproduction. Hum. Fertil. (Camb.) 12, 166–171.
| The role of enzymatic antioxidants detected in the follicular fluid and semen of infertile couples undergoing assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOktrvJ&md5=32a4241d27dc18984de2fbb454e47a31CAS | 19925327PubMed |
Paszkowski, T., Traub, A. I., Robinson, S. Y., and McMaster, D. (1995). Selenium-dependent glutathione peroxidase activity in human follicular fluid. Clin. Chim. Acta 236, 173–180.
| Selenium-dependent glutathione peroxidase activity in human follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFKhtbk%3D&md5=a377d7d1e60b68fa05acb2abf45fc7a6CAS | 7554284PubMed |
Sabatini, L., Wilson, C., Lower, A., Al-Shawaf, T., and Grudzinskas, J. G. (1999). Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil. Steril. 72, 1027–1034.
| Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FlvV2nuw%3D%3D&md5=5d5e16b0d401207c21bc8df4d1a0f9f6CAS | 10593376PubMed |
Seino, T., Saito, H., Kaneko, T., Takahashi, T., Kawachiya, S., and Kurachi, H. (2002). Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization–embryo transfer program. Fertil. Steril. 77, 1184–1190.
| Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization–embryo transfer program.Crossref | GoogleScholarGoogle Scholar | 12057726PubMed |
Sharma, R. K., Pasqualotto, F. F., Nelson, D. R., Thomas, A. J., , and Agarwal, A. (1999). The reactive oxygen species–total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum. Reprod. 14, 2801–2807.
| The reactive oxygen species–total antioxidant capacity score is a new measure of oxidative stress to predict male infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FhvVaiug%3D%3D&md5=346ecba8de2bc62157d2456e3da39946CAS | 10548626PubMed |
Shiotani, M., Noda, Y., Narimoto, K., Imai, K., Mori, T., Fujimoto, K., and Ogawa, K. (1991). Immunohistochemical localization of superoxide dismutase in the human ovary. Hum. Reprod. 6, 1349–1353.
| 1:CAS:528:DyaK38Xht1Glsb4%3D&md5=e0534a7f97d33d18675154b1bb5ba2c4CAS | 1770125PubMed |
Valdez, K. E., Cuneo, S. P., and Turzillo, A. M. (2005). Regulation of apoptosis in the atresia of dominant bovine follicles of the first follicular wave following ovulation. Reproduction 130, 71–81.
| Regulation of apoptosis in the atresia of dominant bovine follicles of the first follicular wave following ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1yns7w%3D&md5=6213ba400dfc9556e3eeed6edaba5ec3CAS | 15985633PubMed |
Yamashita, T., Yamazaki, H., Kon, Y., Watanabe, T., Arikawa, J., Miyoshi, I., Kasai, N., and Kuwabara, M. (1997). Progressive effect of alpha-phenyl-n-tert-butyl nitrone (PBN) on rat embryo development in vitro. Free Radic. Biol. Med. 23, 1073–1077.
| Progressive effect of alpha-phenyl-n-tert-butyl nitrone (PBN) on rat embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVWitbw%3D&md5=af71aaed7647915a15ed81894cd9e7e2CAS | 9358251PubMed |
Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
| Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=6918a8b63336ed3ed8b130b96676d538CAS | 9619561PubMed |
Zhang, X., Li, X. H., Ma, X., Wang, Z. H., Lu, S., and Guo, Y. L. (2006). Redox-induced apoptosis of human oocytes in resting follicles in vitro. J. Soc. Gynecol. Investig. 13, 451–458.
| Redox-induced apoptosis of human oocytes in resting follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFCnsbY%3D&md5=25206f81fa3440d99c443fff8fe7b323CAS | 16879991PubMed |