Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Tracer experiment using 42K+ and 137Cs+ revealed the different transport rates of potassium and caesium within rice roots

Natsuko I. Kobayashi A , Ryohei Sugita A , Tatsuya Nobori A B , Keitaro Tanoi A C and Tomoko M. Nakanishi A
+ Author Affiliations
- Author Affiliations

A Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan.

B Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.

C Corresponding author. Email: uktanoi@mail.ecc.u-tokyo.ac.jp

Functional Plant Biology 43(2) 151-160 https://doi.org/10.1071/FP15245
Submitted: 17 August 2015  Accepted: 3 November 2015   Published: 15 December 2015

Abstract

The differences in the transport characteristics in planta between potassium (K+) and caesium (Cs+) was investigated using their radionuclides, 42K+ and 137Cs+. A tracer experiment using nutrient solutions supplemented with 42K and 137Cs revealed that the ratio of the root’s K+ uptake rate to its Cs+ uptake rate was 7–11 times higher than the K+ : Cs+ concentration ratio in the solution, and the number was varied depending on the K concentration in the solution and also on the growth condition. After entering through the root tissues, the 42K+ : 137Cs+ ratio in the shoots was 4.28 times higher than the value in the roots. However, the 42K+ : 137Cs+ ratio in each leaf did not differ significantly, indicating that the primary transport of K+ and Cs+ in the shoots are similarly regulated. In contrast, among the radionuclides stored in the roots over 4 h, 30% of the 42K+ was exported from the roots over the following hour, whereas only 8% of 137Cs+ was exported. In addition, within the xylem, K+ was shown to travel slowly, whereas Cs+ passed quickly through the roots into the shoots. In conclusion, our study demonstrated very different transport patterns for the two ions in the root tissues.

Additional keywords: cesium, channel blocker, deficiency, ion uptake, live-imaging, selectivity.


References

Aramaki T, Sugita R, Hirose A, Kobayashi NI, Tanoi K, Nakanish TM (2015) Application of 42K to Arabidopsis tissues using real-time radioisotope imaging system (RRIS). Radioisotopes 64, 169–176.
Application of 42K to Arabidopsis tissues using real-time radioisotope imaging system (RRIS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFejur%2FK&md5=9baeba051529328a650290b7c7a73327CAS |

Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology 130, 784–795.
Inventory and functional characterization of the HAK potassium transporters of rice.Crossref | GoogleScholarGoogle Scholar | 12376644PubMed |

Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H (2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. Journal of Biological Chemistry 286, 33931–33941.
Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajtLfL&md5=c71bec6a991fa7ccdfa2a71c4b068d8dCAS | 21795714PubMed |

De Boer AH (1999) Potassium translocation into the root xylem. Plant Biology 1, 36–45.
Potassium translocation into the root xylem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Sjsr8%3D&md5=95d1edf29b3c9bebb455cb3d92c33576CAS |

Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344.
Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFOhtg%3D%3D&md5=e3570da1292607c5cf0cc7aa5c07e52aCAS | 12447548PubMed |

Dräxl S, Müller J, Li WB, Michalke B, Scherb H, Hense BA, Tschiersch J, Kanter U, Schäffner AR (2013) Caesium accumulation in yeast and plants is selectively repressed by loss of the SNARE Sec22p/SEC22. Nature Communications 4, 2092
Caesium accumulation in yeast and plants is selectively repressed by loss of the SNARE Sec22p/SEC22.Crossref | GoogleScholarGoogle Scholar | 23817436PubMed |

Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K1 release into the xylem sap. Cell 94, 647–655.
Identification and disruption of a plant shaker-like outward channel involved in K1 release into the xylem sap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVWksrs%3D&md5=536f6c5ec60bf3c7b8c87311e35ee365CAS | 9741629PubMed |

Gierth M, Maser P, Schroeder J (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiology 137, 1105–1114.
The potassium transporter AtHAK5 functions in K+ deprivation-induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOqs7o%3D&md5=925bbf2095a5315fd8dc0ec8ad85ca0cCAS | 15734909PubMed |

Gommers A, Thiry Y, Vandenhove H, Vandecasteele CM, Smolders E, Merckx R (2000) Radiocesium uptake by one-year-old willows planted as short rotation coppice. Journal of Environmental Quality 29, 1384–1390.
Radiocesium uptake by one-year-old willows planted as short rotation coppice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFKitbs%3D&md5=8fe9e0d438b8c023e16913ed23499285CAS |

Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA, Pritchard J, White PJ (2004) Cesium toxicity in Arabidopsis. Plant Physiology 136, 3824–3837.
Cesium toxicity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjtr%2FE&md5=10c27f40aed8cbc2f64398d447f766fdCAS | 15489280PubMed |

Hampton CR, Broadley MR, White PJ (2005) Short review: the mechanisms of radiocaesium uptake by Arabidopsis roots. Nukleonika 50, S3–S8.

Hirose A, Yamawaki M, Kanno S, Igarashi S, Sugita R, Ohmae Y, Tanoi K, Nakanishi TM (2013) Development of a 14C detectable real-time radioisotope imaging system for plants under intermittent light environment. Journal of Radioanalytical and Nuclear Chemistry 296, 417–422.
Development of a 14C detectable real-time radioisotope imaging system for plants under intermittent light environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVygtbo%3D&md5=fe77e7b4e9252a1750ea56d7ef2070eeCAS |

Homareda H, Matsui H (1986) Biochemical utilization of 42Ar-42K Generator. Radioisotopes 35, 543–546.
Biochemical utilization of 42Ar-42K Generator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhslagsLc%3D&md5=a4c3b75f71ef1201ea0f00471b2cb7d0CAS | 3027767PubMed |

Hoopen FT, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, Jahn TP (2010) Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. Journal of Experimental Botany 61, 2303–2315.
Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences.Crossref | GoogleScholarGoogle Scholar |

Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering 111, 346–356.
Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOgsL8%3D&md5=d05a4f772417f528bd89cf50fd57328fCAS | 21084222PubMed |

Kamei-Ishikawa N, Tagami K, Uchida S (2011) Relationships among 137Cs,133Cs, and K in plant uptake observed in Japanese agricultural fields. Journal of Radioanalytical and Nuclear Chemistry 290, 247–252.
Relationships among 137Cs,133Cs, and K in plant uptake observed in Japanese agricultural fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CitLbF&md5=3ff1902539c78f68b52267c33e480cd0CAS |

Kanno S, Yamawaki M, Ishibashi H, Kobayashi NI, Hirose A, Tanoi K, Nussaume L, Nakanishi TM (2012) Development of real-time radioisotope imaging systems for plant nutrient uptake studies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, 1501–1508.
Development of real-time radioisotope imaging systems for plant nutrient uptake studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Oqsr8%3D&md5=98f79719e930fda9394f615f259c81e9CAS | 22527392PubMed |

Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR (2010) Cesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. Journal of Experimental Botany 61, 3995–4009.
Cesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhtrrK&md5=0e09cf3076383ea654e265cbc3812524CAS | 20624763PubMed |

Kawasaki T, Moritsugu M, Shimizu G (1984) The absorption and translocation of ions in excised barley roots: a multicompartment transport box experiment. Soil Science and Plant Nutrition 30, 417–425.
The absorption and translocation of ions in excised barley roots: a multicompartment transport box experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltVCg&md5=eaa3862afc3769106cc25e7127955ba3CAS |

Kobayashi NI, Iwata N, Saito T, Suzuki H, Iwata R, Tanoi K, Nakanishi TM (2013) Different magnesium uptake and transport activity along the rice root axis revealed by 28Mg tracer experiments. Soil Science and Plant Nutrition 59, 149–155.
Different magnesium uptake and transport activity along the rice root axis revealed by 28Mg tracer experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVyrtrY%3D&md5=2aa019805eafbe19bdce8f30388f5d6eCAS |

Kronzucker HJ, Szczerba MW, Britto DT (2003) Cytosolic potassium homeostasis revisited: 42K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+]. Planta 217, 540–546.
Cytosolic potassium homeostasis revisited: 42K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVWgsL4%3D&md5=8bf68adda4ea719ecf0671e9a2f0046dCAS | 12728317PubMed |

Lembrechts J (1993) A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocaesium. The Science of the Total Environment 137, 81–98.
A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocaesium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Gnsr8%3D&md5=ea9425330f9db491585a746beb0d04e4CAS |

Liu H-Y, Sun W-N, Su W-A, Tang Z-C (2006) Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum 128, 58–69.
Co-regulation of water channels and potassium channels in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVChtbrL&md5=d32f350170dc1f84699bb6b86683093aCAS |

Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127, 1773–1780.
Role of root hairs and lateral roots in silicon uptake by rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWltw%3D%3D&md5=70b494ed11fba7af25ba55c916a4ebc4CAS | 11743120PubMed |

Maathuis FJM, Amtmann A (1999) K+ Nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany 84, 837–851.
K+ Nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios.Crossref | GoogleScholarGoogle Scholar |

Nardini A, Salleo S, Jansen S (2011) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. Journal of Experimental Botany 62, 4701–4718.
More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejs77P&md5=0e5c4264c9ce0dd5ed3526e8d11c191fCAS | 21765173PubMed |

Nisbet AF, Konoplev AV, Shaw G, Lembrechts JF, Merckx R, Smolders E, Vandecasteele CM, Lönsjö H, Carini F, Burton O (1993) Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term – a summary. Science of the Total Environment 137, 173–182.
Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term – a summary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Gnsrs%3D&md5=1b33a29d10395b2c0f44b565c99b2024CAS |

Nobori T, Kobayashi NI, Tanoi K, Nakanishi TM (2014) Effects of potassium in reducing the radiocesium translocation to grain in rice. Soil Science and Plant Nutrition 60, 772–781.
Effects of potassium in reducing the radiocesium translocation to grain in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlymtL7K&md5=fab35817c7b82f66e2308ce6952d97daCAS |

Nobori T, Kobayashi NI, Tanoi K, Nakanishi TM (2015) Alteration in caesium behavior in rice caused by the potassium, phosphorous, and nitrogen deficiency. Journal of Radioanalytical and Nuclear Chemistry
Alteration in caesium behavior in rice caused by the potassium, phosphorous, and nitrogen deficiency.Crossref | GoogleScholarGoogle Scholar |

Ohmori Y, Kajikawa M, Nishida S, Tanaka N, Kobayashi NI, Tanoi K, Furukawa J, Fujiwara T (2014) The effect of fertilization on cesium concentration of rice grown in a paddy field in Fukushima Prefecture in 2011 and 2012. Journal of Plant Research 127, 67–71.
The effect of fertilization on cesium concentration of rice grown in a paddy field in Fukushima Prefecture in 2011 and 2012.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsV2qtg%3D%3D&md5=c57eeedb836d965457104c4236fddff5CAS | 24338063PubMed |

Pacheco-Arjona JR, Ruiz-Lau N, Medina-Lara F, Minero-García Y, Echevarría-Machado I, De los Santos-Briones C, Martínez-Estévez M (2011) Effects of ammonium nitrate, cesium chloride and tetraethylammonium on high-affinity potassium uptake in habanero pepper plantlets (Capsicum chinense Jacq.). African Journal of Biotechnology 10, 13 418–13 429.

Philippar K, Büchsenschütz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R (2003) The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. Journal of Biological Chemistry 278, 16973–16981.
The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVKntbc%3D&md5=c3fc915fcdb7683ef4c4bf4bd08783c6CAS | 12611901PubMed |

Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Journal of Experimental Botany 59, 595–607.
The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamurY%3D&md5=edca52e4c5435637ceb7d729ebb0eef5CAS | 18281719PubMed |

Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. Journal of Experimental Botany 51, 1585–1594.
The effects of ABA on channel-mediated K+ transport across higher plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt12ju78%3D&md5=62696c9337f96bf600d89838fc6ad4e4CAS | 11006309PubMed |

Robison WL, Stone EL (1992) The effect of potassium on the uptake of 137Cs in food crops grown on coral soils: coconut at Bikini Atoll. Health Physics 62, 496–511.
The effect of potassium on the uptake of 137Cs in food crops grown on coral soils: coconut at Bikini Atoll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjtVOm&md5=427d1ad1ddff8e3d22b0338607fa7bdaCAS | 1321096PubMed |

Robison WL, Brown PH, Stone EL, Hamilton TF, Conrado CL, Kehl S (2009) Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications. Journal of Environmental Radioactivity 100, 76–83.
Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtLzE&md5=de90a1ca03e2ca7b2512f5b64beeaff5CAS | 19064306PubMed |

Schneider K, Kuznetzov VK, Sanzharova NI, Kanter U, Telikh KM, Khlopuk MS (2008) Soil-to-plant and soil-to-grain transfer of 137Cs in field-grown maize hybrids during two contrasting seasons: assessing the phenotypic variability and its genetic component. Radiation and Environmental Biophysics 47, 241–252.
Soil-to-plant and soil-to-grain transfer of 137Cs in field-grown maize hybrids during two contrasting seasons: assessing the phenotypic variability and its genetic component.Crossref | GoogleScholarGoogle Scholar | 18231802PubMed |

Sekimoto H, Yamada T, Hotsuki T, Fujiwara T, Mimura T, Matsuzaki A (2014) Evaluation of the radioactive Cs concentration in brown rice based on the K nutritional status of shoots. Journal of Plant Research 127, 73–78.
Evaluation of the radioactive Cs concentration in brown rice based on the K nutritional status of shoots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFSjuw%3D%3D&md5=12bc3598481d25df054a0e4d170d4b36CAS | 24338061PubMed |

Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. The Plant Journal 61, 839–853.
Xylem ionic relations and salinity tolerance in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFaktr0%3D&md5=c1e655a246675271dddd1294c03a206eCAS | 20015063PubMed |

Sugita R, Kobayashi NI, Hirose A, Tanoi K, Nakanishi TM (2014) Evaluation of in vivo detection properties of 22Na, 65Zn, 86Rb, 109Cd and 137Cs in plant tissues using real-time radioisotope imaging system. Physics in Medicine and Biology 59, 837–851.
Evaluation of in vivo detection properties of 22Na, 65Zn, 86Rb, 109Cd and 137Cs in plant tissues using real-time radioisotope imaging system.Crossref | GoogleScholarGoogle Scholar | 24487508PubMed |

Sunarpi , Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W-Y, Leung H-Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44, 928–938.
Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslGlsw%3D%3D&md5=fd9ee4c574bc695f88c2cb9f834537a7CAS | 16359386PubMed |

Tester M (1999) Control of long-distance K+ transport by ABA. Trends in Plant Science 4, 5–6.
Control of long-distance K+ transport by ABA.Crossref | GoogleScholarGoogle Scholar |

Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Rice uptake and distributions of radioactive 137Cs, stable 133Cs and K from soil. Environmental Pollution 117, 403–409.
Rice uptake and distributions of radioactive 137Cs, stable 133Cs and K from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1eitw%3D%3D&md5=3154890fd089791e95af1d10e0338617CAS | 11911524PubMed |

Véry A-A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology 171, 748–769.
Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?Crossref | GoogleScholarGoogle Scholar | 24666983PubMed |

Wegner LH, De Boer AH, Raschke K (1994) Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+. The Journal of Membrane Biology 142, 363–379.
Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFaru70%3D&md5=a97476989e67136a5059226ad7e3b0beCAS | 7707363PubMed |

White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytologist 147, 241–256.
Mechanisms of caesium uptake by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVCitL0%3D&md5=a9acd20c664c394971e292d1cfcc3479CAS |

Zhu Y-G, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany 51, 1635–1645.
Plant uptake of radiocaesium: a review of mechanisms, regulation and application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWisro%3D&md5=dce4a3ab70ae2f3de8be7cb9c35eb2feCAS | 11053452PubMed |

Zhu Y-G, Shaw G, Nisbet AF, Wilkins BT (2002) Effect of external potassium supply and plant age on the uptake of radiocaesium (137Cs) by broad bean (Vicia faba): interpretation of results from a large-scale hydroponic study. Environmental and Experimental Botany 47, 173–187.
Effect of external potassium supply and plant age on the uptake of radiocaesium (137Cs) by broad bean (Vicia faba): interpretation of results from a large-scale hydroponic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFylt74%3D&md5=e45a5439ff46448bd1c13feeeb714924CAS |