Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation

Aleksandra Koralewska A , C. Elisabeth E. Stuiver A , Freek S. Posthumus A , Stanislav Kopriva C , Malcolm J. Hawkesford D and Luit J. De Kok A B E
+ Author Affiliations
- Author Affiliations

A Laboratory of Plant Physiology, University of Groningen, 9750 AA Haren, The Netherlands.

B School of Forest and Ecosystem Science, The University of Melbourne, Creswick, Vic. 3363, Australia.

C Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.

D Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.

E Corresponding author. Email: l.j.de.kok@rug.nl

Functional Plant Biology 35(4) 318-327 https://doi.org/10.1071/FP07283
Submitted: 28 November 2007  Accepted: 24 April 2008   Published: 3 June 2008

Abstract

The activity and expression of sulfate transporters and adenosine 5′-phosphosulfate (APS) reductase (APR) in plants are modulated by the plant sulfur status and the demand for growth. To elucidate regulatory mechanisms in Chinese cabbage [Brassica pekinensis (Lour.) Rupr.], the interactions between atmospheric H2S and sulfate nutrition and the impact on the activity and expression of the Group 1 sulfate transporters and APR were studied. At an ample sulfate supply, H2S exposure of Chinese cabbage resulted in a partial decrease of the sulfate uptake capacity, and at concentrations ≥0.25 μL L−1 a decreased expression of Sultr1;2 in the root and APR in the root and shoot. Upon sulfate deprivation there was a more than 3-fold increase in the sulfate uptake capacity of the root, accompanied by an induced expression of Sultr1;1 and an enhanced expression of Sultr1;2 in the root, along with an induction of Sultr1;2 in the shoot. The enhanced sulfate uptake capacity, the expression of the sulfate transporters in the root and the altered shoot-to-root partitioning appearing during sulfate deprivation were not alleviated upon H2S exposure and not rapidly affected by sulfate re-supply. Expression of APR was strongly enhanced in the root and shoot of sulfate-deprived plants and decreased again upon H2S exposure and sulfate re-supply. The significance of shoot-to-root interaction and sulfate and thiols as regulating signals in the activity and expression of Sultr1;1 and 1;2 is evaluated.

Additional keywords: hydrogen sulfide, sulphate transporters, sulphate uptake, sulfur deficiency, thiols.


Acknowledgements

The authors thank Peter Buchner, Alan Lewis and Peter Wiersema for their contributions to the research. Rothamsted Research and the John Innes Centre received grant-aided support from the Biotechnology and Biological Science Research Council (BBSRC) of the UK.


References


Astolfi S, Zuchi S, Cesco S, di Toppi LS, Pirazzi D, Badiani M, Veranini Z, Pinton R (2006) Iron deficiency induces sulfate uptake and modulates redistribution of reduced sulfur pool in barley plants. Functional Plant Biology 33, 1055–1061.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bouranis DL, Chorianopoulou SN, Siyiannis VF, Protonotarios VE, Hawkesford MJ (2003) Aerenchyma formation in roots of maize during sulphate starvation. Planta 217, 382–391.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea L. as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiology 136, 3396–3408.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Castro A , Stulen I , De Kok LJ (2003) Nitrogen and sulfur requirement of Brassica oleracea L. cultivars. In ‘Sulfur transport and assimilation in plants: regulation, interaction and signaling’. (Eds J-C Davidian, D Grill, LJ De Kok, I Stulen, MJ Hawkesford, E Schnug, H Rennenberg) pp. 181–183. (Backhuys Publishers: Leiden, The Netherlands)

Church GM, Gilbert W (1984) Genomic sequencing. Proceedings of the National Academy USA 81, 1991–1995.
Crossref | GoogleScholarGoogle Scholar | open url image1

Davidian J-C , Hatzfeld Y , Cathala N , Tagmount A , Vidmar JJ (2000) Sulfate uptake and transport in plants. In ‘Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects’. (Eds C Brunold, H. Rennenber, LJ De Kok, I Stulen, J-C Davidian) pp. 19–40. (Paul Haupt: Bern, Switzerland)

De Kok LJ, Buwalda F, Bosma W (1988) Determination of cysteine and its accumulation in spinach leaf tissue upon exposure to excess sulfur. Journal of Plant Physiology 133, 502–505. open url image1

De Kok LJ, Stuiver CEE, Rubinigg M, Westerman S, Grill D (1997) Impact of atmospheric sulfur deposition on sulfur metabolism in plants: H2S as sulfur source for sulfur deprived Brassica oleraea L. Botanica Acta 110, 411–419. open url image1

De Kok LJ , Westerman S , Stuiver CEE , Stulen I (2000) Atmospheric H2S as plant sulfur source: interaction with pedospheric sulfur nutrition-a case study with Brassica oleracea L. In ‘Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects’. (Eds C Brunold, H. Rennenberg, LJ De Kok, I Stulen, J-C Davidian) pp. 41–55. (Paul Haupt: Bern, Switzerland)

De Kok LJ , Castro A , Durenkamp M , Stuiver CEE , Westerman S , Yang L , Stulen I (2002) Sulphur in plant physiology. In ‘Proceedings of the International Fertilizer Society. No. 500’. pp. 1–26. (International Fertilizer Society: York, UK)

De Kok LJ , Durenkamp M , Yang L , Stulen I (2007) Atmospheric sulfur. In ‘Sulfur in plants – an ecological perspective’. (Eds MJ Hawkesford, LJ De Kok) pp. 91–106. (Springer-Verlag: Dordrecht, The Netherlands)

Durenkamp M, De Kok LJ, Kopriva S (2007) Adenosine 5′-phosphosulphate reductase is regulated differently in Allium cepa L. and Brassica oleracea L. upon exposure to H2S. Journal of Experimental Botany 58, 1571–1579.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula × P.alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol. Journal of Experimental Botany 55, 837–845.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. Journal of Experimental Botany 51, 131–138.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hawkesford MJ (2003) Transporter gene families in plants: the sulfate transporter gene family – redundancy or specialization? Physiologia Plantarum 117, 155–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hawkesford MJ (2007) Sulfur and plant ecology: a central role of sulfate transporters for responding to sulfur availability. In ‘Sulfur in plants – an ecological perspective’. (Eds MJ Hawkesford, LJ De Kok) pp. 1–14. (Springer-Verlag: Dordrecht, The Netherlands)

Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant, Cell & Environment 29, 382–395.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hawkesford MJ , Buchner P , Hopkins L , Howarth JR (2003) The plant sulfate transporter family: specialized functions and integration with whole plant nutrition. In ‘Sulfur transport and assimilation in plants regulation, interaction and signaling’. (Eds J-C Davidian, D Grill, LJ De Kok, I Stulen, MJ Hawkesford, E Schnug, H Rennenberg) pp. 1–10. (Backhuys Publishers: Leiden, The Netherlands)

Hermans Ch, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation. Trends in Plant Science 11, 610–617.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. Journal of Experimental Botany 45, 1069–1076.
Crossref | GoogleScholarGoogle Scholar | open url image1

Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiology 124, 461–473.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. The Plant Cell 16, 2693–2704.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of Botany 97, 479–495.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kopriva S , Koprivova A (2003) Sulphate assimilation: a pathway which likes to surprise In ‘Sulphur in higher plants’. (Eds YP Abrol, A Ahmad) pp. 87–112. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. Journal of Experimental Botany 55, 1775–1783.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koralewska A, Posthumus FS, Stuiver CEE, Buchner P, Hawkesford MJ, De Kok LJ (2007) The characteristic high sulfate content in Brassica oleracea is controlled by the expression and activity of sulfate transporters. Plant Biology 9, 654–661.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and sulfate uptake in intact canola. Plant Physiology 111, 147–157.
PubMed |
open url image1

Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. The Plant Journal 18, 89–95.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiology 120, 637–643.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maas FM, Hoffmann I, van Harmelen MJ, De Kok LJ (1986) Refractometric determination of sulfate and other anions in plants separated by high performance liquid chromatography. Plant and Soil 91, 129–132.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parmar S, Buchner P, Hawkesford MJ (2007) Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L. Plant Biology 9, 647–653.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rennenberg H, Kemper O, Thoene B (1989) Recovery of sulfate transport into heterotrophic tobacco cells from inhibition by reduced glutathione. Physiologia Plantarum 76, 271–276. open url image1

Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proceedings of the National Academy of Sciences USA 92, 9373–9377.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. The Plant Journal 12, 875–884.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stuiver CEE, De Kok LJ (2001) Atmospheric H2S as sulfur source for Brassica oleracea: kinetics of H2S uptake and activity of O-acetylserine (thiol)lyase as affected by sulfur nutrition. Environmental and Experimental Botany 46, 29–36.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stuiver CEE, De Kok LJ, Westerman S (1997) Sulfur deficiency in Brassica oleracea L.: Development, biochemical characterization, and sulfur/nitrogen interactions. Russian Journal of Plant Physiology: A Comprehensive Russian Journal on Modern Phytophysiology 44, 505–513. open url image1

Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant Journal 23, 171–182.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vidmar JJ, Tagmount A, Cathala N, Touraine B, Davidian J-C (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Letters 475, 65–69.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Westerman S, De Kok LJ, Stulen I (2000) Interaction between metabolism of atmospheric H2S in the shoot and sulfate uptake by the roots of curly kale (Brassica oleracea L.). Physiologia Plantarum 109, 443–449.
Crossref | GoogleScholarGoogle Scholar | open url image1

Westerman S, Blake-Kalff MMA, De Kok LJ, Stulen I (2001a) Sulfate uptake and utilization by two varieties of Brassica oleracea with different sulfur need as affected by atmospheric H2S. Phyton 41, 49–62. open url image1

Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001b) Atmospheric H2S as sulfur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulfate reduction pathway. Plant Physiology and Biochemistry 39, 425–432.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yang L, Stulen I, De Kok LJ (2006a) Sulfur dioxide: relevance of toxic and nutritional effects for Chinese cabbage. Environmental and Experimental Botany 57, 236–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yang L, Stulen I, De Kok LJ (2006b) Impact of sulfate nutrition on the utilization of atmospheric SO2 as sulfur source for Chinese cabbage. Journal of Plant Nutrition and Soil Science 169, 529–534.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. The Plant Journal 29, 465–473.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1