Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Stomatal Limitation of Photosynthesis in Abscisic Acid-Treated and in Water-Stressed Leaves Measured at Elevated CO2

SP Robinson, WJR Grant and BR Loveys

Australian Journal of Plant Physiology 15(4) 495 - 503
Published: 1988

Abstract

Feeding 10-5M (±)-abscisic acid (ABA) via the petioles of detached leaves of apricot (Prunus armeniaca) or sunflower (Helianthus annuus) decreased stomatal conductance and assimilation rate but not the calculated intercellular CO2 concentration (Ci) suggesting non-stomatal as well as stomatal inhibition of photosynthesis. Evidence for non-stomatal inhibition was not observed in spinach (Spinacia oleracea). There was no significant decrease in rates of electron transport nor ribulosebisphosphate carboxylase (Rubisco) activity in intact chloroplasts isolated from ABA-treated sunflower leaves. Oxygen evolution by leaf discs with 3% CO2 in the gas phase was inhibited in ABA- treated sunflower and apricot leaves but not in spinach; the inhibition was only half as great as the inhibition of assimilation rate at ambient CO2. The quantum yield of oxygen evolution decreased in ABA-treated sunflower leaves in proportion to the decrease in the light-saturated rate. There was no significant difference in room temperature chlorophyll fluorescence of ABA-treated leaves compared to controls.

Stomatal conductance of sunflower leaves decreased by more than 90% when the CO2 concentration was increased from 340 ppm to 1000 ppm but at much higher CO2 concentrations the stomata appeared to reopen. Stomatal conductance at 2-3% CO2 (20 000-30 000 ppm) was 50% that at ambient CO2. This reopening of stomata at high CO2 was inhibited in previously water-stressed or ABA-treated plants. In unstressed leaves, the maximum rate of oxygen evolution occurred at 0.5-2% CO2 but in ABA-treated leaves 10-15% CO2 was required for maximum rates. It is suggested that stomatal closure may limit photosynthesis in ABA-treated or previously water-stressed leaves even at the relatively high CO2 concentrations normally used in the leaf disc oxygen electrode. The inhibition of photosynthesis by ABA is largely overcome at saturating CO2. The apparent non-stomatal inhibition suggested by gas exchange measurements and the decreased quantum yield could be explained by patchy stomatal closure in response to ABA.

https://doi.org/10.1071/PP9880495

© CSIRO 1988

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions