Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits

Gabriela L. Müller A B , Agustina Triassi A , Clarisa E. Alvarez A , María L. Falcone Ferreyra A , Carlos S. Andreo A , María V. Lara A and María F. Drincovich A
+ Author Affiliations
- Author Affiliations

A Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina.

B Corresponding author. Email: muller@cefobi-conicet.gov.ar

Functional Plant Biology 41(4) 411-423 https://doi.org/10.1071/FP13239
Submitted: 7 August 2013  Accepted: 22 October 2013   Published: 28 November 2013

Abstract

Glycine-rich RNA-binding proteins (GRPs) are involved in the modulation of the post-transcriptional processing of transcripts and participate as an output signal of the circadian clock. However, neither GRPs nor the circadian rhythmic have been studied in detail in fleshy fruits as yet. In the present work, the GRP1 gene family was analysed in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Three highly homologous LeGRP1 genes (LeGRP1ac) were identified. For each gene, three products were found, corresponding to the unspliced precursor mRNA (pre-mRNA), the mature mRNA and the alternatively spliced mRNA (preLeGRP1ac, mLeGRP1ac and asLeGRP1ac, respectively). Tomato GRPs (LeGRPs) show the classic RNA recognition motif and glycine-rich region, and were found in the nucleus and in the cytosol of tomato fruit. By using different Escherichia coli mutants, it was found that LeGRP1s contained in vivo RNA-melting abilities and were able to complement the cold-sensitive phenotype of BX04 cells. Particular circadian profiles of expression, dependent on the fruits’ developmental stage, were found for each LeGRP1 form. During ripening off the vine of fruits harvested at the mature green stage, the levels of all LeGRP1ac forms drastically increased; however, incubation at 4°C prevented such increases. Analysis of the expression of all LeGRP1ac forms suggests a positive regulation of expression in tomato fruit. Overall, the results obtained in this work reveal a complex pattern of expression of GRPs in tomato fruit, suggesting they might be involved in post-transcriptional modulation of circadian processes of this fleshy fruit.

Additional keywords: alternative spliced products, circadian rhythm, post-transcriptional modulation, Solanum lycopersicum.


References

Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Molecular Biology 37, 859–869.
Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVyrs78%3D&md5=d292ff5499d2a8f869c70cce0fb519b5CAS | 9678581PubMed |

Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Adam E, Fejes E, Schafer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. The Plant Cell 16, 1433–1445.
Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFWlsLo%3D&md5=f162cd0bdf3b351d27a51301f28b6d30CAS | 15155879PubMed |

Blasing OE, Gibon M, Gunther Y, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W-R, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. The Plant Cell 17, 3257–3281.
Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 16299223PubMed |

Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60, 1823–1837.
Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWhs78%3D&md5=a6dbe09bd7b228437b3af3c0b1ba2ab1CAS | 19264753PubMed |

Bradford MM (1976) Rapid and quantitative method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
Rapid and quantitative method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=bead43c1adb6f57157bea3eab849e63cCAS | 942051PubMed |

Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112, 195–203.
“Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvVOqtbs%3D&md5=62c5ebc4376559d4ef7501bfe796905dCAS | 6266278PubMed |

Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiology 104, 1015–1025.
Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslCrs7g%3D&md5=6d0a07a8fb1876032a8866c71f59d4feCAS | 7513083PubMed |

Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis-elements. The Plant Cell 15, 3033–3050.
The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis-elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSgsQ%3D%3D&md5=664be7e8219b7172ac110f522fef4b34CAS | 14630974PubMed |

Chen M (2008) Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling. Current Opinion in Plant Biology 11, 503–508.
Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCnsr7M&md5=8a37184e22349fc376fd85230c16d882CAS | 18691930PubMed |

Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP (2007) The TIGR Plant Transcript Assemblies database. Nucleic Acids Research 35, D846–D851.
The TIGR Plant Transcript Assemblies database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFGnsw%3D%3D&md5=17ba6883d34c509ade09e65d24d35f1bCAS | 17088284PubMed |

Čikoš S, Bukovská A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Molecular Biology 8, 113
Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis.Crossref | GoogleScholarGoogle Scholar | 18093344PubMed |

Espinoza C, Bieniawska Z, Hincha DK, Hannah MA (2008) Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signaling & Behavior 3, 593–594.
Interactions between the circadian clock and cold-response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Facella P, Lopez L, Carbone F, Galbraith DW, Giuliano G, Perrotta G (2008) Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS ONE 3, e2798
Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.Crossref | GoogleScholarGoogle Scholar | 18665253PubMed |

Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D, Engler G, Sachetto-Martins G (2007) AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225, 1339–1351.
AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOhtbo%3D&md5=71de142ed6408167009f15a996d98a31CAS | 17123099PubMed |

Gómez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomenech P, Pages M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334, 262–264.
A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein.Crossref | GoogleScholarGoogle Scholar | 2969461PubMed |

Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVyisrw%3D&md5=246e365fc77aa8db3634db0b6c6e6516CAS | 11118138PubMed |

Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON (2010) Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS ONE 5, e12887
Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator.Crossref | GoogleScholarGoogle Scholar | 20886102PubMed |

Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal 5, 799–813.
A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvVSguw%3D%3D&md5=43c7388b4c9222a8aff419f52853c7acCAS | 8054987PubMed |

Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 94, 8515–8520.
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlWiu7k%3D&md5=d1b5297bb4e9859c02e302ca5d524eaaCAS | 9238008PubMed |

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research 27, 297–300.
Plant cis-acting regulatory DNA elements (PLACE) database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVKgug%3D%3D&md5=004825107a2083c3a5ba90f8d88a6183CAS | 9847208PubMed |

Hirose T, Sugita M, Sugiura M (1993) cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Proceedings of the National Academy of Sciences of the United States of America 21, 3981–3987.

Hobson GE (1987) Low temperature injury and the storage of ripening tomatoes. Journal of Horticultural Science 62, 55–62.

Hudson K (2010) The circadian clock-controlled transcriptome of developing soybean seeds. The Plant Genome 3, 3–13.
The circadian clock-controlled transcriptome of developing soybean seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2hsbc%3D&md5=3365620678959c614f79d2c08d8c561aCAS |

Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. The Plant Journal 42, 890–900.
Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCgurk%3D&md5=405a450100d0fd2bd5b3523739740a16CAS | 15941401PubMed |

Kim JY, Park SJ, Jang B, Jung C-H, Ahn SJ, Goh C-H, Cho K, Han O, Kang H (2007a) Functional characterization of a glycine-rich RNA-binding protein2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal 50, 439–451.
Functional characterization of a glycine-rich RNA-binding protein2 in Arabidopsis thaliana under abiotic stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWms78%3D&md5=3389de5b3f4fbd4ab2a118a8bc80d5eeCAS | 17376161PubMed |

Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung C-H, Kang H (2007b) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in E. coli. Nucleic Acids Research 35, 506–516.
Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOlsLw%3D&md5=fd517da10eaddaa0ed028032bd5700a1CAS | 17169986PubMed |

Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal 55, 455–466.
Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSrtrnL&md5=d79296d90fffdb4d50fb345879cd8f49CAS | 18410480PubMed |

Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Journal of Experimental Botany 61, 2317–2325.
Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSqtLo%3D&md5=27e77ed85d99bc15d655ce6c0c206d78CAS | 20231330PubMed |

Kim MK, Jung HJ, Kim DH, Kang H (2012) Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiologia Plantarum 146, 297–307.
Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslaqsL3O&md5=7176d2c3d6e2d71b2b1209ed321ae27aCAS | 22462633PubMed |

Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bahuer D, Adám E, Shäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors Phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. The Plant Cell 14, 1541–1555.
Nucleocytoplasmic partitioning of the plant photoreceptors Phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvV2rsb0%3D&md5=1e21194f8ca8a922468fa5788bccfc37CAS | 12119373PubMed |

Kumaki Y, Nitta K, Hikichi K, Matsumoto T, Matsushima N (2004) Side chain–side chain interactions of arginine with tyrosine and aspartic acid in Arg/Gly/Tyr-rich domains within plant glycine-rich RNA binding proteins. Journal of Biochemistry 136, 29–37.
Side chain–side chain interactions of arginine with tyrosine and aspartic acid in Arg/Gly/Tyr-rich domains within plant glycine-rich RNA binding proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFWrsr8%3D&md5=340281b4a1d0b3048e2c7905461587e5CAS | 15269237PubMed |

Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. Journal of Experimental Botany 56, 3007–3016.
Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCjt7nJ&md5=902cfd482e2070f8c32b25eecbdc58b4CAS | 16207746PubMed |

Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H (2011) Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. Journal of Experimental Botany 62, 4003–4011.
Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCqu74%3D&md5=2ded05da1591a2133c849c178f729ae6CAS | 21511907PubMed |

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=445d75904529d747c279af05b4e6db88CAS | 5432063PubMed |

Landick R, Stewart J, Lee DN (1990) Amino acid changes in conserved regions of the beta-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination. Genes & Development 4, 1623–1636.
Amino acid changes in conserved regions of the beta-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVKks74%3D&md5=6e94554eb37bd80e343266b0bd804052CAS |

Lee MO, Kim KP, Kim BG, Hahn JS (2009) Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Molecules and Cells 27, 47–54.
Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVCnurs%3D&md5=18e1ff7e8d2a49346d555eee748f16f0CAS | 19214433PubMed |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−Δ C T. Methods (San Diego, Calif.) 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2−Δ C T.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=cda22da73d6034ad2e4c74827f633baaCAS |

Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends in Plant Science 14, 229–236.
Role of plant RNA-binding proteins in development, stress response and genome organization.Crossref | GoogleScholarGoogle Scholar | 19285908PubMed |

Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128, 787–800.
Beyond the sequence: cellular organization of genome function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12isrs%3D&md5=577bdc08268598e40180331af9d5dd53CAS | 17320514PubMed |

Müller GL, Budde CO, Lauxmann MA, Triassi A, Andreo CS, Drincovich MF, Lara MV (2013) Expression profile of transcripts encoding cell wall remodelling proteins in tomato fruit cv. Micro-Tom subjected to 15°C storage. Functional Plant Biology 40, 449–458.
Expression profile of transcripts encoding cell wall remodelling proteins in tomato fruit cv. Micro-Tom subjected to 15°C storage.Crossref | GoogleScholarGoogle Scholar |

Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, González M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using Difference gel electrophoresis (DIGE). BMC Genomics 11, 43
Proteomic analysis of peach fruit mesocarp softening and chilling injury using Difference gel electrophoresis (DIGE).Crossref | GoogleScholarGoogle Scholar | 20082721PubMed |

Orzaez D, Mirabel S, Wieland WH, Granell G (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiology 140, 3–11.
Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs7c%3D&md5=170a2a11c5f2d081899d3962bcd796faCAS | 16403736PubMed |

Piechulla B (1988) Plastid and nuclear mRNA fluctuations in tomato leaves – diurnal and circadian rhythms during extended dark and light periods. Plant Molecular Biology 11, 345–353.
Plastid and nuclear mRNA fluctuations in tomato leaves – diurnal and circadian rhythms during extended dark and light periods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtVymtr0%3D&md5=62896db0b498d679923b431bd30bccdfCAS | 24272347PubMed |

Piechulla B, Gruissem W (1987) Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. The EMBO Journal 6, 3593–3599.

Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Molecular Biology 38, 655–662.
Identification of tomato Lhc promoter regions necessary for circadian expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVWjsLo%3D&md5=96a4ae5713d90ec19d4b75bcd2d06b02CAS | 9747810PubMed |

Plaxton WC (1989) Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant leaf and endosperm. European Journal of Biochemistry 181, 443–451.
Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant leaf and endosperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktF2rtbo%3D&md5=b557d14656da278fbdc733cea87484c9CAS | 2714295PubMed |

Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. The Plant Journal 28, 455–464.
Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVGhug%3D%3D&md5=0f96e1823ab1dc5370b8c8a4096bd2c2CAS | 11737782PubMed |

Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany 56, 1651–1663.
Light, the circadian clock, and sugar perception in the control of lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktl2qurs%3D&md5=d064dce3d52ed375e920a5377aaa8b67CAS | 15878986PubMed |

Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Biochimica et Biophysica Acta 1492, 1–14.
Plant glycine-rich proteins: a family or just proteins with a common motif?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVCqsLs%3D&md5=4ac08a3b84a2ebe221ae6ec3128c6730CAS | 10858526PubMed |

Schmidt F, Marnef A, Cheung M-K, Wilson I, Hancock J, Staiger D, Ladomery M (2010) A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Molecular Biology Reports 37, 839–845.
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFSitg%3D%3D&md5=a072703ee1e1f80a2585093daf598f5cCAS | 19672695PubMed |

Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D (2007) Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal 52, 1119–1130.
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.Crossref | GoogleScholarGoogle Scholar | 17924945PubMed |

Schöning JC, Streitner C, Meyer IM, Gao Y, Staiger D (2008) Reciprocal regulation of glycine-rich RNA binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research 36, 6977–6987.
Reciprocal regulation of glycine-rich RNA binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 18987006PubMed |

Scott JW, Harbaugh BK (1989) Micro-Tom – a miniature dwarf tomato. Florida Agricultural Experiment Station Circular 370, 1–6.

Shaw PJ, Brown JW (2004) Plant nuclear bodies. Current Opinion in Plant Biology 7, 614–620.
Plant nuclear bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1ChsL0%3D&md5=7c6093545dd2de4c30afd94530811c8fCAS | 15491908PubMed |

Smillie RM, Hetherington SE, Davies WJ (1999) Photosynthetic activity of calyx, green shoulder, pericarp and locular parenchyma of tomato fruit. Journal of Experimental Botany 50, 707–18.

Spector DL (2006) Cellular bodies. Cell 127, 1070–1071.

Staiger D (2001) RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356, 1755–1759.
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGrtA%3D%3D&md5=dd05094e19fc2d2fa5dc37df825487c1CAS | 11710982PubMed |

Staiger D, Green R (2011) RNA-based regulation in the plant circadian clock. Trends in Plant Science 16, 517–523.
RNA-based regulation in the plant circadian clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GgsLfE&md5=b4f8be5b096d85d4ace4eb72bbbbe93bCAS | 21782493PubMed |

Staiger D, Zecca L, Wieczorek Kirk DA, Apel K, Eckstein L (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal 33, 361–371.
The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslWrsr4%3D&md5=47c19566dc336a4171c0baa43a235aa6CAS | 12535349PubMed |

Stephen JR, Dent KC, Finch-Savage WE (2003) A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Gene 320, 177–183.
A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFyjurk%3D&md5=675355d2b29e01a87c7b1fd495cd11ddCAS | 14597401PubMed |

Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal 56, 239–250.
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlChu7rO&md5=67866e1c2701d82e698758dc00dddc43CAS | 18573194PubMed |

Taylor WC (1989) Transcriptional regulation by a circadian rhythm. The Plant Cell 1, 259–264.

Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annual Review of Plant Physiology and Plant Molecular Biology 46, 445–474.
Light-regulated transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsVCqur8%3D&md5=6243af4ba9d66f8d2f7ab2496dd682ebCAS |

Vega-García MO, López-Espinoza G, Chávez Ontiveros J, Caro-Corrales JJ, Delgado Vargas F, López-Valenzuela JA (2010) Changes in protein expression associated with chilling injury in tomato fruit. Journal of the American Society for Horticultural Science 135, 83–89.

Wang S, Liang D, Shi S, Ma F, Shu H, Wang R (2011) Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Molecular Biology Reporter 29, 125–134.
Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh.Crossref | GoogleScholarGoogle Scholar |

Xia B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Molecular Microbiology 40, 179–188.
Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKitrs%3D&md5=13cd26e2bd561376cfb87eeccee7a80eCAS | 11298285PubMed |

Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. The Plant Cell 17, 804–821.
Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ygtrk%3D&md5=f1923352155496a3ebee0272c4b72d6fCAS | 15705947PubMed |

Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng XW (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular Cell 32, 617–630.
COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSntr3E&md5=4c0b11926252e66e6bb3af01d8fa1340CAS | 19061637PubMed |

Ziemienowicz A, Haasen D, Staiger D, Merkle T (2003) Arabidopsis transportin1 is the nuclear import receptor for the circadian clock regulated RNA-binding protein AtGRP7. Plant Molecular Biology 53, 201–212.
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock regulated RNA-binding protein AtGRP7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVGgtbg%3D&md5=362e71cd0b7b93ee8e6ddb371ef5e3bfCAS | 14756317PubMed |