Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE (Open Access)

Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics

Claire Domoney A , Maggie Knox A , Carol Moreau A , Mike Ambrose A , Sarah Palmer A B , Peter Smith B , Vangelis Christodoulou C , Peter G. Isaac C , Matthew Hegarty D , Tina Blackmore D , Martin Swain D and Noel Ellis D E F
+ Author Affiliations
- Author Affiliations

A Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.

B Wherry and Sons Ltd, The Old School, High Street, Rippingale, Bourne, Lincolnshire PE10 0SR, UK.

C IDna Genetics Ltd, Norwich Research Park, Norwich NR4 7UH, UK.

D Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3EB, UK.

E Present address: CGIAR Research Program on Grain Legumes, c/o ICRISAT, Patancheru 502 324, Andhra Pradesh, India.

F Corresponding author. Email: noe2@aber.ac.uk

This paper originates from a presentation at theVI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 27 October 2012.

Functional Plant Biology 40(12) 1261-1270 https://doi.org/10.1071/FP13147
Submitted: 19 May 2013  Accepted: 18 July 2013   Published: 28 August 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Abstract

A fast neutron (FN)-mutagenised population was generated in Pisum sativum L. (pea) to enable the identification and isolation of genes underlying traits and processes. Studies of several phenotypic traits have clearly demonstrated the utility of the resource by associating gene deletions with phenotype followed by functional tests exploiting additional mutant sources, from both induced and natural variant germplasm. For forward genetic screens, next generation sequencing methodologies provide an opportunity for identifying genes associated with deletions rapidly and systematically. The application of rapid reverse genetic screens of the fast neutron mutant pea population supports conclusions on the frequency of deletions based on phenotype alone. These studies also suggest that large deletions affecting one or more loci can be non-deleterious to the pea genome, yielding mutants that could not be obtained by other means. Deletion mutants affecting genes associated with seed metabolism and storage are providing unique opportunities to identify the products of complex and related gene families, and to study the downstream consequences of such deletions.

Additional keywords: fast neutron mutagenesis, genomic deletions, seed proteins.


References

Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 100, 2992–2997.
Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVaiu7k%3D&md5=eb5dabfccf9edbc1840a692ac1c5e4edCAS | 12606727PubMed |

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376
Rapid SNP discovery and genetic mapping using sequenced RAD markers.Crossref | GoogleScholarGoogle Scholar | 18852878PubMed |

Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, Kalwani S, Ragoussis J, Mott R, Harberd NP (2012) Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Research 22, 1306–1315.
Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVylurvL&md5=4f4d9d298f9926cebbbc549965387679CAS | 22499668PubMed |

Bolon Y-T, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ, Orf JH, Naeve SL, Stupar RM, Vance CP (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiology 156, 240–253.
Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWgt7k%3D&md5=9919110847bc6c1c3b71d23800b41c27CAS | 21321255PubMed |

Casey R, Domoney C (1999) Pea globulins. In ‘Seed proteins’. (Eds PR Shewry, R Casey) pp. 171–208. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Chen J, Moreau C, Liu Y, Kawaguchic M, Hofer J, Ellis N, Chen R (2012) Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes. Proceedings of the National Academy of Sciences of the United States of America 109, 11 723–11 728.
Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ciu7rK&md5=ee5f5fd894015220398d35de4df8c985CAS |

Couzigou J-M, Zhukov V, Mondy S, el Heba GA, Cosson V, Ellis THN, Ambrose M, Wen J, Tadege M, Tikhonovich I, Mysore KS, Putterill J, Hofer J, Borisov AY, Ratet P (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. The Plant Cell 24, 4498–4510.
NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKmuw%3D%3D&md5=0217473d702e724a86c40e73f917cf31CAS | 23136374PubMed |

Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology 9, R43
UTILLdb, a Pisum sativum in silico forward and reverse genetics tool.Crossref | GoogleScholarGoogle Scholar | 18302733PubMed |

Domoney C, Casey R (1990) Another class of vicilin gene in Pisum. Planta 182, 39–42.
Another class of vicilin gene in Pisum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFSgurw%3D&md5=84a2b393c0176e20dd417a31b1197756CAS |

Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist 153, 17–25.
An integrated and comparative view of pea genetic and cytogenetic maps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1yktw%3D%3D&md5=aa723a87d83c1f2dc8cf5a908d594a90CAS |

Ellis THN, Domoney C, Castleton J, Cleary W, Davies DR (1986) Vicilin genes of Pisum. Molecular & General Genetics 205, 164–169.
Vicilin genes of Pisum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtl2qug%3D%3D&md5=b32e5af5c7b2289c50ffd6b3b5ec31deCAS |

Ellis THN, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992) Linkage maps in pea. Genetics 130, 649–663.

Gorel FL, Berdnikov VA, Temnykh SV (1994) A deletion covering the Tl locus in Pisum sativum. Pisum Genetics 26, 16–17.

Heim U, Bäumlein H, Wobus U (1994) The legumin gene family: a reconstructed Vicia faba legumin gene encoding a high-molecular-weight subunit is related to type B genes. Plant Molecular Biology 25, 131–135.
The legumin gene family: a reconstructed Vicia faba legumin gene encoding a high-molecular-weight subunit is related to type B genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslWrs7k%3D&md5=a900633ccd34768c2111df3ef8cd74e9CAS | 8003694PubMed |

Heim U, Wang Q, Kurz T, Borisjuk L, Golombek S, Neubohn B, Adler K, Gahrtz M, Sauer N, Weber H, Wobus U (2001) Expression patterns and subcellular localization of a 52 kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development. Plant Molecular Biology 47, 461–474.
Expression patterns and subcellular localization of a 52 kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Gmsrg%3D&md5=38b32f44945a5c0893a032d51e16d958CAS |

Hellens RP, Moreau C, Lin-Wang K, Schwinn KE, Thomson SJ, Fiers MWEJ, Frew TJ, Murray SR, Hofer JMI, Jacobs JME, Davies KM, Allan AC, Bendahmane A, Coyne CJ, Timmerman-Vaughan GM, Ellis THN (2010) Identification of Mendel’s white flower character. PLoS ONE 5, e13230
Identification of Mendel’s white flower character.Crossref | GoogleScholarGoogle Scholar | 20949001PubMed |

Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C, Bendahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. The Plant Cell 21, 420–428.
Tendril-less regulates tendril formation in pea leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrtr4%3D&md5=44d3c91923c7bf3fbef66e90afccc883CAS | 19208900PubMed |

Hoffmann D, Jiang Q, Men A, Kinkema M, Gresshoff PM (2007) Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus. Journal of Plant Physiology 164, 460–469.
Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFSqt7s%3D&md5=ff4240e88244de90a369ae7351b71940CAS | 17363108PubMed |

Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theoretical and Applied Genetics 93, 1103–1111.
Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpvFKmsQ%3D%3D&md5=39c4701c914b065fecd6542d23e47039CAS |

Matta NK, Gatehouse JA (1982) Inheritance and mapping of storage protein genes in Pisum sativum L. Heredity 48, 383–392.
Inheritance and mapping of storage protein genes in Pisum sativum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsF2lur8%3D&md5=5dd5254612ef4d9940d4bfcff08d5b1fCAS |

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17, 240–248.
Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKis7w%3D&md5=575a59f2fa513d841857561c549c9bb6CAS | 17189378PubMed |

Moreau C, Ambrose MJ, Turner L, Hill L, Ellis THN, Hofer JMI (2012) The b gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiology 159, 759–768.
The b gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFamu7o%3D&md5=c94c343a3baca7f38270bdb8e90c891cCAS | 22492867PubMed |

Pellew C, Sverdrup A (1923) New observations on the genetics of peas. Journal of Genetics 13, 125–131.
New observations on the genetics of peas.Crossref | GoogleScholarGoogle Scholar |

Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiology 151, 1077–1086.
Deletion-based reverse genetics in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsbrK&md5=4f09eafe7f3078aec744aec69e968ef3CAS | 19759346PubMed |

Sainsbury F, Tattersall AD, Ambrose MJ, Turner L, Ellis THN, Hofer JMI (2006) A crispa null mutant facilitates identification of a crispa-like pseudogene in pea. Functional Plant Biology 33, 757–763.
A crispa null mutant facilitates identification of a crispa-like pseudogene in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCrsbw%3D&md5=f2c82d7acfc4846781567358c9bdebd7CAS |

Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109–112.
Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVensLo%3D&md5=e3a125e1e9d2a134253299a94c21115aCAS | 12411574PubMed |

Sidorova KK (1975) Induced pea mutant with creeping stem. Pisum Newsletter 7, 57–58.

van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiology 126, 133–144.
Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslWjsLs%3D&md5=b91cfbf632f547b0d9d067cdee466b13CAS | 11351077PubMed |

Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng X, Hu X, Luo D (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.) Proceedings of the National Academy of Sciences of the United States of America 105, 10 414–10 419.
Genetic control of floral zygomorphy in pea (Pisum sativum L.)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFKktbw%3D&md5=4bddb8c3e9ad0c2b31864e5e35f6a78dCAS |

Zhang L, Fetch T, Nirmala J, Schmierer D, Brueggeman R, Steffenson B, Kleinhofs A (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theoretical and Applied Genetics 113, 847–855.
Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlChtLc%3D&md5=3aab5fc7be5adb94be19536b2e3d1cc6CAS | 16832646PubMed |

Zhuang L, Ambrose M, Rameau C, Weng L, Yang J, Hu X, Luo D, Li X (2012) LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcriptional factor, controls organ lateral growth and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Molecular Plant 5, 1333–1345.
LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcriptional factor, controls organ lateral growth and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKntrrP&md5=70cc13dab63d0ee7ab7d2c951f3cb3dbCAS | 22888154PubMed |