Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

l-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the l-galactose pathway

Robert D. Hancock A C , Paul G. Walker A , Simon D. A. Pont A , Nicola Marquis A , Sebastian Vivera A , Sandra L. Gordon A , Rex M. Brennan A and Roberto Viola B
+ Author Affiliations
- Author Affiliations

A Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.

B IASMA, Via E. Mach, S. Michele all’Adige, I-38010, Trento, Italy.

C Corresponding author. Email: rob.hancock@scri.ac.uk

Functional Plant Biology 34(12) 1080-1091 https://doi.org/10.1071/FP07221
Submitted: 12 September 2007  Accepted: 22 October 2007   Published: 27 November 2007

Abstract

Blackcurrant (Ribes nigrum L.) is a widely grown commercial crop valued for its high vitamin C (l-ascorbic acid, AsA) content. In the present study, a systematic analysis of the mechanism of fruit AsA accumulation was undertaken. AsA accumulation occurred during fruit expansion and was associated with high in situ biosynthetic capacity via the l-galactose pathway and low rates of turnover. Cessation of AsA accumulation was associated with reduced biosynthesis and increased turnover. Translocation of AsA from photosynthetic or vegetative tissues contributed little to fruit AsA accumulation. Manipulation of substrate availability by defoliation had no effect on fruit AsA concentration but significantly reduced fruit yields. Supply of the AsA precursor l-galactono-1,4-lactone to intact, attached fruit transiently increased fruit AsA concentration which rapidly returned to control levels after removal of the compound. These data suggest strong developmental, metabolic and genetic control of AsA accumulation in blackcurrant fruit and indicate the potential for breeding high AsA cultivars.

Additional keywords: antioxidant, blackcurrant, breeding, dehydroascorbic acid, vitamin C.


Acknowledgements

Funding was provided under the UK Department for the Environment, Food and Rural Affairs Horticulture LINK scheme (MRS/002/03) with contributions from GlaxoSmithKline, the Biotechnology and Biological Sciences Research Council, the Scottish Executive Environment and Rural Affairs Department and the Horticultural Development Council.


References


Agius F, González-Limothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nature Biotechnology 21, 177–181.
Crossref | d
-galacturonic acid reductase.&journal=Nature Biotechnology&volume=21&pages=177-181&publication_year=2003&author=V%20Valpuesta&hl=en&doi=10.1038/nbt777" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant, Cell & Environment 28, 1073–1081.
Crossref | l-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress.&journal=Plant, Cell & Environment&volume=28&pages=1073-1081&publication_year=2005&author=CH%20Foyer&hl=en&doi=10.1111/j.1365-3040.2005.01338.x" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | open url image1

Bligny R, Gout E, Kaiser W, Heber U, Walker D, Douce R (1997) pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: studies involving 31P-NMR spectroscopy and chlorophyll fluorescence. Biochimica et Biophysica Acta 1320, 142–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bode AM, Cunningham L, Rose RC (1990) Spontaneous decay of oxidized ascorbic acid (dehydro-l-ascorbic acid) evaluated by high-pressure liquid chromatography. Clinical Chemistry 36, 1807–1809.
PubMed |
open url image1

Brennan RM, Gordon SL (2002) Future perspectives in blackcurrant breeding. Acta Horticulturae 585, 39–45. open url image1

Brennan R (2007) Currants (Ribes spp.). In ‘Breeding of temperate fruit Crops’. (Ed. J Hancock). (Kluwer Academic Press: Dordrecht), in press.

Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America 100, 3525–3530.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 96, 4198–4203.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. The Journal of Biological Chemistry 281, 15662–15670.
Crossref | l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme.&journal=The Journal of Biological Chemistry&volume=281&pages=15662-15670&publication_year=2006&author=N%20Smirnoff&hl=en&doi=10.1074/jbc.M601409200" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Davey MW, Gilot C, Persiau G, Østergaard J, Han Y, Bauw GC, van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension cultures. Plant Physiology 121, 535–543.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

DeBolt S, Cook DR, Ford CM (2006) l-Tartaric acid synthesis from vitamin C in higher plants. Proceedings of the National Academy of Sciences of the United States of America 103, 5608–5613.
Crossref | l-Tartaric acid synthesis from vitamin C in higher plants.&journal=Proceedings of the National Academy of Sciences of the United States of America&volume=103&pages=5608-5613&publication_year=2006&author=CM%20Ford&hl=en&doi=10.1073/pnas.0510864103" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

DeBolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Annals of Botany 99, 3–8.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal n press , open url image1

Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiologia Plantarum 92, 696–717.
Crossref | GoogleScholarGoogle Scholar | open url image1

Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109, 1047–1057.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Franceschi VR, Tarlyn NM (2002) l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiology 130, 649–656.
Crossref | l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants.&journal=Plant Physiology&volume=130&pages=649-656&publication_year=2002&author=NM%20Tarlyn&hl=en&doi=10.1104/pp.007062" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. The Plant Journal 30, 541–553.
Crossref | l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis.&journal=The Plant Journal&volume=30&pages=541-553&publication_year=2002&author=N%20Smirnoff&hl=en&doi=10.1046/j.1365-313X.2002.01315.x" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Hancock RD, McRae D, Haupt S, Viola R (2003) Synthesis of l-ascorbic acid in the phloem. BMC Plant Biology 3, 7.
Crossref | l-ascorbic acid in the phloem.&journal=BMC Plant Biology&volume=3&pages=7-&publication_year=2003&author=R%20Viola&hl=en&doi=10.1186/1471-2229-3-7" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Critical Reviews in Plant Sciences 24, 167–188.
Crossref | l-ascorbic acid in plants.&journal=Critical Reviews in Plant Sciences&volume=24&pages=167-188&publication_year=2005&author=R%20Viola&hl=en&doi=10.1080/07352680591002165" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | open url image1

Heber U, Bukhov NG, Wiese C, Hedrich R (2003) Energized uptake of ascorbate and dehydroascorbate from the apoplast of intact leaves in relation to apoplastic steady state concentrations of ascorbate. Plant Biology 5, 151–158.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horemans N, Asard H, Caubergs RJ (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiology 114, 1247–1253.
PubMed |
open url image1

Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Ôba K, Hirai M (1998) l-Galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant & Cell Physiology 39, 1350–1358.
PubMed |
open url image1

Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum 126, 343–355.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones KS, Paroschy J, McKersie BD, Bowley SR (1999) Carbohydrate composition and freezing tolerance of canes and buds in Vitis vinifera. Journal of Plant Physiology 155, 101–106. open url image1

Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Baraclough D, MacRae E (2004a) A highly specific l-galactose-1-phosphate phosphatase on the path to ascorbate synthesis. Proceedings of the National Academy of Sciences of the United States of America 101, 16976–16981.
Crossref | l-galactose-1-phosphate phosphatase on the path to ascorbate synthesis.&journal=Proceedings of the National Academy of Sciences of the United States of America&volume=101&pages=16976-16981&publication_year=2004&author=E%20MacRae&hl=en&doi=10.1073/pnas.0407453101" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Laing WA, Fearson N, Bulley S, MacRae E (2004b) Kiwifruit l-galactose dehydrogenase: molecular, biochemical and physiological aspects of the enzyme. Functional Plant Biology 31, 1015–1025.
Crossref | l-galactose dehydrogenase: molecular, biochemical and physiological aspects of the enzyme.&journal=Functional Plant Biology&volume=31&pages=1015-1025&publication_year=2004&author=E%20MacRae&hl=en&doi=10.1071/FP04090" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | open url image1

Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America 104, 9534–9539.
Crossref | l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content.&journal=Proceedings of the National Academy of Sciences of the United States of America&volume=104&pages=9534-9539&publication_year=2007&author=SM%20Bulley&hl=en&doi=10.1073/pnas.0701625104" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke CG (2007) Arabidopsis VTC2 encodes a GDP-l-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. The Journal of Biological Chemistry 282, 18879–18885.
Crossref | l-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants.&journal=The Journal of Biological Chemistry&volume=282&pages=18879-18885&publication_year=2007&author=CG%20Clarke&hl=en&doi=10.1074/jbc.M702094200" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Loewus FA, Jang R, Seegmiller CG (1956) The conversion of C14-labeled sugars to l-ascorbic acid in ripening strawberries. The Journal of Biological Chemistry 222, 649–664.
PubMed |
open url image1

Loewus FA, Jang R, Seegmiller CG (1958) The conversion of C14-labeled sugars to l-ascorbic acid in ripening strawberries. IV. A comparative study of d-galacturonic acid and l-ascorbic acid formation. The Journal of Biological Chemistry 232, 533–541.
PubMed |
open url image1

Loewus FA, Kelly S (1961) The metabolism of d-galacturonic acid and its methyl ester in the detached ripening strawberry. Archives of Biochemistry and Biophysics 95, 483–493.
Crossref | d-galacturonic acid and its methyl ester in the detached ripening strawberry.&journal=Archives of Biochemistry and Biophysics&volume=95&pages=483-493&publication_year=1961&author=S%20Kelly&hl=en&doi=10.1016/0003-9861(61)90180-1" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology 134, 1200–1205.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mapson LW, Breslow E (1958) Biological synthesis of ascorbic acid: l-galactono-γ-lactone dehydrogenase. The Biochemical Journal 68, 395–406.
PubMed |
open url image1

Ôba K, Fukui M, Imai Y, Iriyama S, Nogami K (1994) l-Galactono-γ-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded potato tuber tissue. Plant & Cell Physiology 35, 473–478. open url image1

Ôba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of l-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. Journal of Biochemistry 117, 120–124.
PubMed |
open url image1

Østergaard J, Persiau G, Davey MW, Bauw G, van Montagu M (1997) Isolation of a cDNA coding for l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. The Journal of Biological Chemistry 272, 30009–30016.
Crossref | l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast.&journal=The Journal of Biological Chemistry&volume=272&pages=30009-30016&publication_year=1997&author=M%20van%20Montagu&hl=en&doi=10.1074/jbc.272.48.30009" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Palonen P (1999) Relationship of seasonal changes in carbohydrates and cold hardiness in canes and buds of three red raspberry cultivars. Journal of the American Society for Horticultural Science 124, 507–513. open url image1

Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiology 132, 1631–1641.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Razavi F, Keulemans J, Davey MW (2005) A study of the l-ascorbate biosynthetic capacity of apple fruit. Communications in Agricultural and Applied Biological Sciences 70, 213–216.
PubMed |
open url image1

Richardson PT, Baker DA (1982) The chemical composition of cucurbit vascular exudates. Journal of Experimental Botany 33, 1239–1247.
Crossref | GoogleScholarGoogle Scholar | open url image1

Richardson AC, Marsh KB, Boldingh HL, Pickering AH, Bulley SM, Frearson NJ, Ferguson AR, Thornber SE, Bolitho KM, MacRae EA (2004) High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant, Cell & Environment 27, 423–435.
Crossref | GoogleScholarGoogle Scholar | open url image1

Roach FA (1985) Black currants. In ‘Cultivated fruits of Britain, their origin and history’. pp. 304–310. (Blackwell: London)

Roberts AG, Santa-Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana. Comparison of a fluorescent solute with a fluorescent virus. The Plant Cell 9, 1381–1396.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Running JA, Burlingame RP, Berry A (2003) The pathway of l-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis. Journal of Experimental Botany 54, 1841–1849.
Crossref | l-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis.&journal=Journal of Experimental Botany&volume=54&pages=1841-1849&publication_year=2003&author=A%20Berry&hl=en&doi=10.1093/jxb/erg207" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochemical Society Transactions 24, 472–478.
PubMed |
open url image1

Tabata K, Ôba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono-1,4-lactone dehydrogenase. The Plant Journal 27, 139–148.
Crossref | l-galactono-1,4-lactone dehydrogenase.&journal=The Plant Journal&volume=27&pages=139-148&publication_year=2001&author=M%20Esaka&hl=en&doi=10.1046/j.1365-313x.2001.01074.x" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Tedone L, Hancock RD, Alberino S, Haupt S, Viola R (2004) Long-distance transport of l-ascorbic acid in potato. BMC Plant Biology 4, 16.
Crossref | l-ascorbic acid in potato.&journal=BMC Plant Biology&volume=4&pages=16-&publication_year=2004&author=R%20Viola&hl=en&doi=10.1186/1471-2229-4-16" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Viola R, Davies HV (1992) A microplate assay for rapid enzymatic quantification of sugars in potato tubers. Potato Research 35, 55–58.
Crossref | GoogleScholarGoogle Scholar | open url image1

Viola R, Vreugdenhil D, Davies HV, Sommerville L (1998) Accumulation of l-ascorbic acid in tuberising stolon tips of potato (Solanum tuberosum L.). Journal of Plant Physiology 152, 58–63. open url image1

Viola R, Brennan RM, Davies HV, Sommerville L (2000) l-Ascorbic acid accumulation in berries of Ribes nigrum L. The Journal of Horticultural Science & Biotechnology 75, 409–412. open url image1

Walker PG, Gordon SL, Brennan RM, Hancock RD (2006) A high-throughput monolithic HPLC method for rapid vitamin C phenotyping of berry fruit. Phytochemical Analysis 17, 284–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolucka BA, Persiau G, van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3″,5″-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proceedings of the National Academy of Sciences of the United States of America 98, 14843–14848.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolucka BA, van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry 278, 47483–47490.
Crossref | l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants.&journal=Journal of Biological Chemistry&volume=278&pages=47483-47490&publication_year=2003&author=M%20van%20Montagu&hl=en&doi=10.1074/jbc.M309135200" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1