Articles citing this paper
Growth and Root NO3- and PO43- Uptake Capacity of Three Desert Species in Response to Atmospheric CO2 Enrichment
H. BassiriRad, J. F. Reynolds, R. A. Virginia and M. H. Brunelle
24(3) pp.353 - 358
37 articles found in Crossref database.
Root hydraulic conductivity of Larrea tridentata and Helianthus annuus under elevated CO2
HUXMAN K. A.,
SMITH S. D., NEUMAN D. S.
Plant, Cell & Environment. 1999 22(3). p.325
Family‐ and population‐level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae)
Jenkins Klus Dawn,
Kalisz Susan,
Curtis Peter S.,
Teeri James A., Tonsor Stephen J.
American Journal of Botany. 2001 88(6). p.1080
Effects of CO2 enrichment on growth partitioning of Chloris gayana in the arid environment of the UAE
Ksiksi Taoufik, Youssef Tarek
Grassland Science. 2010 56(3). p.183
Climate Change and Adaptation (2012)
ElevatedpCO2affects N‐metabolism of young poplar plants (Populus tremula × P. alba) differently at deficient and sufficient N‐supply
Kruse Jörg,
Hetzger Ilka,
Mai Carsten,
Polle Andrea, Rennenberg Heinz
New Phytologist. 2003 157(1). p.65
The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background
STITT M., KRAPP A.
Plant, Cell & Environment. 1999 22(6). p.583
Climate Change and Vulnerability and Adaptation (2013)
Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus
Pandey Renu,
Lal Milan Kumar, Vengavasi Krishnapriya
Plant Cell Reports. 2018 37(9). p.1231
The relative abundance of three plant functional types in temperate grasslands and shrublands of North and South America: effects of projected climate change
Epstein Howard E.,
Gill Richard A.,
Paruelo Jose M.,
Lauenroth William K.,
Jia Gensuo J., Burke Ingrid C.
Journal of Biogeography. 2002 29(7). p.875
Elevated CO2 concentration, nitrogen use, and seed production in annual plants
MIYAGI KAY‐MAY,
KINUGASA TOSHIHIKO,
HIKOSAKA KOUKI, HIROSE TADAKI
Global Change Biology. 2007 13(10). p.2161
Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem
Arndal M. F.,
Schmidt I. K.,
Kongstad J.,
Beier C., Michelsen A.
Functional Plant Biology. 2014 41(1). p.1
Microbial 13C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO2
JIN V. L., EVANS R. D.
Global Change Biology. 2010 16(8). p.2334
Photosynthetic down‐regulation in Larrea tridentata exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field (FACE) exposure
Huxman T. E.,
Hamerlynck E. P.,
Moore B. D.,
Smith S. D.,
Jordan D. N.,
Zitzer S. F.,
Nowak R. S.,
Coleman J. S., Seemann J. R.
Plant, Cell & Environment. 1998 21(11). p.1153
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO
2
Cheng Lei,
Booker Fitzgerald L.,
Tu Cong,
Burkey Kent O.,
Zhou Lishi,
Shew H. David,
Rufty Thomas W., Hu Shuijin
Science. 2012 337(6098). p.1084
Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol
Jin Jian,
Tang Caixian,
Armstrong Roger, Sale Peter
Plant and Soil. 2012 358(1-2). p.91
Nitrate Uptake and Reduction in Plants
Tischner Rudolf
Journal of Crop Improvement. 2006 15(2). p.53
Biotic, abiotic and performance aspects of the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility
Jordan DeaN. N.,
Zitzer Stephen F.,
Hendrey George R.,
Lewin Keith F.,
Nagy JohN.,
Nowak Robert S.,
Smith Stanley D.,
Coleman James S., Seemann Jeffrey R.
Global Change Biology. 1999 5(6). p.659
Ecophysiological responses of two dominant subalpine tree species Betula albo-sinensis and Abies faxoniana to intra- and interspecific competition under elevated temperature
Duan Baoli,
Dong Tingfa,
Zhang Xiaolu,
Zhang Yuanbin, Chen Juan
Forest Ecology and Management. 2014 323 p.20
Nitrogen uptake kinetics and saltmarsh plant responses to global change
Cott Grace M.,
Caplan Joshua S., Mozdzer Thomas J.
Scientific Reports. 2018 8(1).
Growth, nitrogen uptake, and metabolism in two semiarid shrubs grown at ambient and elevated atmospheric CO2 concentrations: effects of nitrogen supply and source
Causin Humberto Fabio,
Tremmel David C.,
Rufty Thomas W., Reynolds James F.
American Journal of Botany. 2004 91(4). p.565
Altering young tomato plant growth by nitrate and CO2preserves the proportionate relation linking long‐term organic‐nitrogen accumulation to intercepted radiation
Adamowicz Stéphane, Le Bot Jacques
New Phytologist. 2008 180(3). p.663
Phosphorus uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment
Gavito Mayra E.,
Bruhn Dan, Jakobsen Iver
New Phytologist. 2002 154(3). p.751
Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2at the Nevada Desert FACE Facility
Hamerlynck E.P,
Huxman T.E,
Nowak R.S,
Redar S,
Loik M.E,
Jordan D.N,
Zitzer S.F,
Coleman J.S,
Seemann J.R, Smith S.D
Journal of Arid Environments. 2000 44(4). p.425
The effects of free‐air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat root growth
Wechsung G.,
Wechsung F.,
Wall G. W.,
Adamsen F. J.,
Kimball B. A.,
Pinter JR. P. J.,
Lamorte R. L.,
Garcia R. L., Kartschall TH.
Global Change Biology. 1999 5(5). p.519
A meta‐analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole‐plant level
Poorter Hendrik,
Knopf Oliver,
Wright Ian J.,
Temme Andries A.,
Hogewoning Sander W.,
Graf Alexander,
Cernusak Lucas A., Pons Thijs L.
New Phytologist. 2022 233(4). p.1560
The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review
Jin Jian,
Tang Caixian, Sale Peter
Annals of Botany. 2015 116(6). p.987
Climate Change and Vulnerability and Adaptation (2013)
A conceptual framework for understanding semi‐arid land degradation: ecohydrological interactions across multiple‐space and time scales
Turnbull L.,
Wainwright J., Brazier R. E.
Ecohydrology. 2008 1(1). p.23
Effects of elevated CO2 concentration on seed production in C3 annual plants
Hikosaka Kouki,
Kinugasa Toshihiko,
Oikawa Shimpei,
Onoda Yusuke, Hirose Tadaki
Journal of Experimental Botany. 2011 62(4). p.1523
The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco
Geiger M.,
Haake V.,
Ludewig F.,
Sonnewald U., Stitt M.
Plant, Cell & Environment. 1999 22(10). p.1177
The effects of elevated CO2 on root respiration rates of two Mojave Desert shrubs
CLARK NAOMI M.,
APPLE MARTHA E., NOWAK ROBERT S.
Global Change Biology. 2010 16(5). p.1566
Climate and Land Degradation (2007)
Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: effects of elevated CO2, N supply, and N source
Causin Humberto F.,
Rufty Thomas W., Reynolds James F.
American Journal of Botany. 2006 93(5). p.716
Increasing CO2 accelerates root growth and enhances water acquisition during early stages of development in Larrea tridentata
Obrist D., Arnone III J. A.
New Phytologist. 2003 159(1). p.175
Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate
Matt P.,
Geiger M.,
Walch‐Liu P.,
Engels C.,
Krapp A., Stitt M.
Plant, Cell & Environment. 2001 24(11). p.1119
Abiotic Stresses in Plants (2003)
Nitrate uptake and reduction in higher and lower plants
Tischner R.
Plant, Cell & Environment. 2000 23(10). p.1005