Articles citing this paper
Calcification and inorganic carbon acquisition in coccolithophores
Lorraine Berry, Alison R. Taylor, Uwe Lucken, Keith P. Ryan and Colin Brownlee
29(3) pp.289 - 299
53 articles found in Crossref database.
The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review
Zondervan Ingrid
Deep Sea Research Part II: Topical Studies in Oceanography. 2007 54(5-7). p.521
Mineral Formation by Microorganisms (2022)
BEFORE OCEAN ACIDIFICATION: CALCIFIER CHEMISTRY LESSONS1
Roleda Michael Y.,
Boyd Philip W., Hurd Catriona L.
Journal of Phycology. 2012 48(4). p.840
Growth of the coccolithophore <i>Emiliania huxleyi</i> in light- and
nutrient-limited batch reactors: relevance for the BIOSOPE deep
ecological
niche of coccolithophores
Perrin Laura,
Probert Ian,
Langer Gerald, Aloisi Giovanni
Biogeosciences. 2016 13(21). p.5983
Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches
Holtz Lena‐Maria,
Thoms Silke,
Langer Gerald, Wolf‐Gladrow Dieter A.
Journal of Phycology. 2013 49(2). p.417
Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell
von Dassow Peter,
Ogata Hiroyuki,
Probert Ian,
Wincker Patrick,
Da Silva Corinne,
Audic Stéphane,
Claverie Jean-Michel, de Vargas Colomban
Genome Biology. 2009 10(10).
Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures
Moheimani Navid R., Borowitzka Michael A.
Applied Microbiology and Biotechnology. 2011 90(4). p.1399
Effects of varying growth irradiance and nitrogen sources on calcification and physiological performance of the coccolithophoreGephyrocapsa oceanicagrown under nitrogen limitation
Tong Shanying,
Hutchins David A.,
Fu Feixue, Gao Kunshan
Limnology and Oceanography. 2016 61(6). p.2234
Effects of CO<sub>2</sub>-driven ocean acidification on early life stages of marine medaka (<i>Oryzias melastigma</i>)
Mu J.,
Jin F.,
Wang J.,
Zheng N., Cong Y.
Biogeosciences. 2015 12(12). p.3861
Coccolithophores (2004)
Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry
von Dassow Peter,
van den Engh Ger,
Iglesias-Rodriguez Debora, Gittins John R.
Journal of Plankton Research. 2012 34(12). p.1011
Coccolithophore assemblage response to Black Sea Water inflow into the North Aegean Sea (NE Mediterranean)
Karatsolis B.-Th.,
Triantaphyllou M.V.,
Dimiza M.D.,
Malinverno E.,
Lagaria A.,
Mara P.,
Archontikis O., Psarra S.
Continental Shelf Research. 2017 149 p.138
A Novel Cl− Inward-Rectifying Current in the Plasma Membrane of the Calcifying Marine Phytoplankton Coccolithus pelagicus
Taylor Alison R., Brownlee Colin
Plant Physiology. 2003 131(3). p.1391
Handbook of the Protists (2017)
Seasonal and spatial dynamics of the phytoplankton community in the Salish Sea, 2015–2019
Nemcek Nina,
Hennekes Melissa,
Sastri Akash, Perry R. Ian
Progress in Oceanography. 2023 217 p.103108
Handbook of the Protists (2017)
No changes in contributions of echinoderms to the carbon budgets in shelf seas of China over the past five decades
Jin Shaofei,
Yan Xiaodong,
Zhang Heng,
Xiao Ning,
Zhang Junlong,
Liu Wenliang, Xiong Zhe
Estuarine, Coastal and Shelf Science. 2015 163 p.64
Enhanced E. huxleyi carbonate counterpump as a positive feedback to increase deglacial pCO2sw in the Eastern Equatorial Pacific
Balestrieri Chiara,
Ziveri Patrizia,
Grelaud Michaël,
Mortyn P. Graham, Agnini Claudia
Quaternary Science Reviews. 2021 260 p.106921
Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi
Kottmeier Dorothee M.,
Rokitta Sebastian D., Rost Björn
New Phytologist. 2016 211(1). p.126
Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high‐CO2 geological past
MOOLNA A., RICKABY R. E. M.
Geobiology. 2012 10(1). p.72
A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms
Ziveri P.,
Thoms S.,
Probert I.,
Geisen M., Langer G.
Biogeosciences. 2012 9(3). p.1025
Controls over δ44/40Ca and Sr/Ca variations in coccoliths: New perspectives from laboratory cultures and cellular models
Mejía Luz María,
Paytan Adina,
Eisenhauer Anton,
Böhm Florian,
Kolevica Ana,
Bolton Clara,
Méndez-Vicente Ana,
Abrevaya Lorena,
Isensee Kirsten, Stoll Heather
Earth and Planetary Science Letters. 2018 481 p.48
Calcification Moderates the Increased Susceptibility to UV Radiation of the Coccolithophorid Gephryocapsa oceanica Grown under Elevated CO2 Concentration: Evidence Based on Calcified and Non‐calcified Cells
Miao Hangbin,
Beardall John, Gao Kunshan
Photochemistry and Photobiology. 2018 94(5). p.994
Reduced H+channel activity disrupts pH homeostasis and calcification in coccolithophores at low ocean pH
Kottmeier Dorothee M.,
Chrachri Abdesslam,
Langer Gerald,
Helliwell Katherine E.,
Wheeler Glen L., Brownlee Colin
Proceedings of the National Academy of Sciences. 2022 119(19).
Assessment of Tropical Cyclone Risk to Coral Reefs: Case Study for Australia
Do Cameron,
Saunders Georgia Elizabeth, Kuleshov Yuriy
Remote Sensing. 2022 14(23). p.6150
The Omega myth: what really drives lower calcification rates in an acidifying ocean
Cyronak Tyler,
Schulz Kai G., Jokiel Paul L.
ICES Journal of Marine Science. 2016 73(3). p.558
New Possibilities to Design Biogenic Calcite Particles. Influence of Cultivation Parameters and Purification on Coccolith Properties
Jakob Ioanna,
Posten Clemens,
Chairopoulou Makrina,
Scholl Sarita, Vučak Marijan
Chemie Ingenieur Technik. 2018 90(4). p.456
Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms
Kroeker Kristy J.,
Kordas Rebecca L.,
Crim Ryan N., Singh Gerald G.
Ecology Letters. 2010 13(11). p.1419
Coccolithogenesis In Scyphosphaera apsteinii (Prymnesiophyceae)
Drescher Brandon,
Dillaman Richard M., Taylor Alison R.
Journal of Phycology. 2012 48(6). p.1343
Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi
Delille Bruno,
Harlay Jérôme,
Zondervan Ingrid,
Jacquet Stephan,
Chou Lei,
Wollast Roland,
Bellerby Richard G. J.,
Frankignoulle Michel,
Borges Alberto Vieira,
Riebesell Ulf, Gattuso Jean‐Pierre
Global Biogeochemical Cycles. 2005 19(2).
Bioremediation and other potential applications of coccolithophorid algae: A review
Moheimani N.R.,
Webb J.P., Borowitzka M.A.
Algal Research. 2012 1(2). p.120
The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions
West Tristram O., McBride Allen C.
Agriculture, Ecosystems & Environment. 2005 108(2). p.145
The Physiology of Microalgae (2016)
Coccolithophore Cell Biology: Chalking Up Progress
Taylor Alison R.,
Brownlee Colin, Wheeler Glen
Annual Review of Marine Science. 2017 9(1). p.283
On the possibility of using bacteria for recycling finest fractions of concrete waste: a critical review
Nežerka V.,
Holeček P.,
Somr M.,
Tichá P.,
Domonkos M., Stiborová H.
Reviews in Environmental Science and Bio/Technology. 2023 22(2). p.427
Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study
Borchard Corinna,
Borges Alberto V.,
Händel Nicole, Engel Anja
Journal of Experimental Marine Biology and Ecology. 2011 410 p.61
The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae
Zhou Chengxu,
Jiang Ying,
Liu Baoning,
Yan Xiaojun, Zhang Wendong
Acta Ecologica Sinica. 2012 32(1). p.38
CO2 acidification and its differential responses on aquatic biota – a review
Thomas Anto,
Ramkumar Arunachalam, Shanmugam Achiraman
Environmental Advances. 2022 8 p.100219
Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage
Jansson Christer, Northen Trent
Current Opinion in Biotechnology. 2010 21(3). p.365
Handbook of the Protists (2016)
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi
Holtz Lena-Maria,
Wolf-Gladrow Dieter, Thoms Silke
Journal of Theoretical Biology. 2015 364 p.305
Molecular Mechanisms Underlying Calcification in Coccolithophores
Mackinder Luke,
Wheeler Glen,
Schroeder Declan,
Riebesell Ulf, Brownlee Colin
Geomicrobiology Journal. 2010 27(6-7). p.585
A review of mineral carbonation technology in sequestration of CO2
Olajire Abass A.
Journal of Petroleum Science and Engineering. 2013 109 p.364
A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions
Chen S.,
Beardall J., Gao K.
Biogeosciences. 2014 11(17). p.4829
Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores
Lomora Mihai,
Shumate David,
Rahman Asrizal Abdul, Pandit Abhay
Advanced Therapeutics. 2019 2(2).
Sensitivity of coccolithophores to carbonate chemistry and ocean acidification
Beaufort L.,
Probert I.,
de Garidel-Thoron T.,
Bendif E. M.,
Ruiz-Pino D.,
Metzl N.,
Goyet C.,
Buchet N.,
Coupel P.,
Grelaud M.,
Rost B.,
Rickaby R. E. M., de Vargas C.
Nature. 2011 476(7358). p.80
Multimodel analysis of the response of the coccolithophore Emiliania huxleyi to an elevation of under nitrate limitation
Bernard O.,
Sciandra A., Madani S.
Ecological Modelling. 2008 211(3-4). p.324
Oceanic Acidification (2011)
Warming and Ocean Acidification Effects on Phytoplankton—From Species Shifts to Size Shifts within Species in a Mesocosm Experiment
Sommer Ulrich,
Paul Carolin,
Moustaka-Gouni Maria, Zhou Xuhui
PLOS ONE. 2015 10(5). p.e0125239
Coccolithophore biomineralization: New questions, new answers
Brownlee Colin,
Wheeler Glen L., Taylor Alison R.
Seminars in Cell & Developmental Biology. 2015 46 p.11
Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming
Kroeker Kristy J.,
Kordas Rebecca L.,
Crim Ryan,
Hendriks Iris E.,
Ramajo Laura,
Singh Gerald S.,
Duarte Carlos M., Gattuso Jean‐Pierre
Global Change Biology. 2013 19(6). p.1884
Formation, Development, and Propagation of a Rare Coastal Coccolithophore Bloom
Matson Paul G.,
Washburn Libe,
Fields Erik A.,
Gotschalk Chris,
Ladd Tanika M.,
Siegel David A.,
Welch Zoë S., Iglesias‐Rodriguez M. Debora
Journal of Geophysical Research: Oceans. 2019 124(5). p.3298
Environmental controls on coccolithophore calcification
Raven JA, Crawfurd K
Marine Ecology Progress Series. 2012 470 p.137