Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Identification of motility-associated progesterone-responsive differentially phosphorylated proteins

V. Sagare-Patil A and D. Modi A B
+ Author Affiliations
- Author Affiliations

A Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India.

B Corresponding author. Email: deepaknmodi@yahoo.com; modid@nirrh.res.in

Reproduction, Fertility and Development 29(6) 1115-1129 https://doi.org/10.1071/RD15492
Submitted: 25 November 2015  Accepted: 9 March 2016   Published: 11 May 2016

Abstract

Progesterone is one of the regulators of sperm motility and hyperactivation. In human spermatozoa, the effects of progesterone are thought to be mediated by protein phosphorylation. In the present study, we identified 22 proteins that are differentially phosphorylated (12 phosphorylated and 10 dephosphorylated) by progesterone in human spermatozoa. Functionally, the differentially phosphorylated proteins are predicted to have cytoskeletal localisation and to be associated with sperm motility. 5 µM of progesterone to capacitated increased the phosphorylation of tyrosine residues in the principal piece and protein tyrosine kinase activity increased by almost 3.5-fold. For the first time, we demonstrate that tyrosine phosphatases are also activated in response to progesterone and that inhibition of tyrosine phosphatases attenuates dephosphorylation of flagellar proteins. We propose that progesterone activates both kinase and phosphatase pathways, leading to changes in the phosphorylation of many proteins in sperm flagella to increase motility.

Additional keywords: phosphatases, proteomics, tyrosine kinase.


References

Alasmari, W., Costello, S., Correia, J., Oxenham, S. K., Morris, J., Fernandes, L., Ramalho-Santos, J., Kirkman-Brown, J., Michelangeli, F., Publicover, S., and Barratt, C. L. (2013). Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J. Biol. Chem. 288, 6248–6258.
Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlKntr8%3D&md5=9342a09a67ae179069b0a2d1d6993c22CAS | 23344959PubMed |

Baker, M. A., Naumovski, N., Hetherington, L., Weinberg, A., Velkov, T., and Aitken, R. J. (2013). Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 13, 61–74.
Head and flagella subcompartmental proteomic analysis of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVShtA%3D%3D&md5=39db8dee280f637abb4a4df32dd831ffCAS | 23161668PubMed |

Baldi, E., Luconi, M., Bonaccorsi, L., and Forti, G. (1998). Nongenomic effects of progesterone on spermatozoa: mechanisms of signal transduction and clinical implications. Front. Biosci. 3, D1051–D1059.
| 1:CAS:528:DyaK1cXntlKgsr4%3D&md5=e909d19ba0507b2d9697317c6176528aCAS | 9792892PubMed |

Baldi, E., Luconi, M., and Forti, G. (2009). Nongenomic activation of spermatozoa by steroid hormones: facts and functions. Mol. Cell. Endocrinol. 308, 39–46.
Nongenomic activation of spermatozoa by steroid hormones: facts and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFant7k%3D&md5=01681337682ec73a3f8cf3b83eb25cacCAS | 19549590PubMed |

Bhilawadikar, R., Zaveri, K., Mukadam, L., Naik, S., Kamble, K., Modi, D., and Hinduja, I. (2013). Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate. J. Assist. Reprod. Genet. 30, 513–523.
Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate.Crossref | GoogleScholarGoogle Scholar | 23519396PubMed |

Cooper, T. G., Noonan, E., von Eckardstein, S., Auger, J., Baker, H. W., Behre, H. M., Haugen, T. B., Kruger, T., Wang, C., Mbizvo, M. T., and Vogelsong, K. M. (2010). World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 16, 231–245.
World Health Organization reference values for human semen characteristics.Crossref | GoogleScholarGoogle Scholar | 19934213PubMed |

Diniz, M. C., Pacheco, A. C., Farias, K. M., and de Oliveira, D. M. (2012). The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr. Protein Pept. Sci. 13, 524–546.
The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVelu70%3D&md5=f147f0ef7747ede8d8c669d1a4d329c0CAS | 22708495PubMed |

Falsetti, C., Baldi, E., Krausz, C., Casono, R., Failli, P., and Forti, G. (1993). Decreased responsiveness to progesterone of spermatozoa in oligozoospermic patients. J. Androl. 14, 17–22.
| 1:STN:280:DyaK3s3jtF2jtg%3D%3D&md5=5d8cdb99b638a71acc10c8f3330bea5eCAS | 8473233PubMed |

Fujinoki, M., Kawamura, T., Toda, T., Ohtake, H., Shimizu, N., Yamaoka, S., and Okuno, M. (2003). Identification of the 58-kDa phosphoprotein associated with motility initiation of hamster spermatozoa. J. Biochem. 134, 559–565.
Identification of the 58-kDa phosphoprotein associated with motility initiation of hamster spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgtbrL&md5=4364e8e76fdde41e178a8e63337c11c2CAS | 14607983PubMed |

Gadkar, S., Shah, C. A., Sachdeva, G., Samant, U., and Puri, C. P. (2002). Progesterone receptor as an indicator of sperm function. Biol. Reprod. 67, 1327–1336.
Progesterone receptor as an indicator of sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rtLY%3D&md5=faab7076680bc71d87214f85350aeb23CAS | 12297552PubMed |

Gagnon, C., White, D., Huitorel, P., and Cosson, J. (1994). A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes. Mol. Biol. Cell 5, 1051–1063.
A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtF2jsb4%3D&md5=912a63a3ee7f01d2cd21caa80c21d814CAS | 7841521PubMed |

Gingras, D., White, D., Garin, J., Multigner, L., Job, D., Cosson, J., Huitorel, P., Zingg, H., Dumas, F., and Gagnon, C. (1996). Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain. J. Biol. Chem. 271, 12 807–12 813.
Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlGjtLY%3D&md5=61aa3d38cc109b20a017512ef6dbdfa7CAS |

Harrison, D. A., Carr, D. W., and Meizel, S. (2000). Involvement of protein kinase A and A kinase anchoring proteins in the progesterone initiated human sperm acrosome reaction. Biol. Reprod. 62, 811–820.
Involvement of protein kinase A and A kinase anchoring proteins in the progesterone initiated human sperm acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOrsbo%3D&md5=5255784037b9b5d66c576094a583d2b8CAS | 10684828PubMed |

Inaba, K. (2011). Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538.
Sperm flagella: comparative and phylogenetic perspectives of protein components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCnsbo%3D&md5=92dfb8efc884de58c76035d9d1f42c3aCAS | 21586547PubMed |

Jagan Mohanarao, G., and Atreja, S. K. (2012). Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res. Vet. Sci. 93, 618–623.
Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFCitbk%3D&md5=682f22629cbf0299658096644b1e467aCAS | 22035659PubMed |

Khan, S. A., Suryawanshi, A. R., Ranpura, S. A., Jadhav, S. V., and Khole, V. V. (2009). Identification of novel immunodominant epididymal sperm proteins using combinatorial approach. Reproduction 138, 81–93.
Identification of novel immunodominant epididymal sperm proteins using combinatorial approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsbo%3D&md5=5abd9fa00ce719102a83c5d46fda6654CAS | 19423663PubMed |

Krapf, D., Arcelay, E., Wertheimer, E. V., Sanjay, A., Pilder, S. H., Salicioni, A. M., and Visconti, P. E. (2010). Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J. Biol. Chem. 285, 7977–7985.
Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyqtLc%3D&md5=d8ff05e392b07dae7de572368d5b8579CAS | 20068039PubMed |

Kumar, V., Kota, V., and Shivaji, S. (2008). Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol. Reprod. 79, 190–199.
Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWms7w%3D&md5=a39ecd9d917b30d6c444db0380f24a99CAS | 18401010PubMed |

Li, K., Xue, Y., Chen, A., Jiang, Y., Xie, H., Shi, Q., Zhang, S., and Ni, Y. (2014). Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS One 9, e115841.
Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm.Crossref | GoogleScholarGoogle Scholar | 25541943PubMed |

Lishko, P. V., Botchkina, I. L., and Kirichok, Y. (2011). Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391.
Progesterone activates the principal Ca2+ channel of human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKru7o%3D&md5=ce30b4b40fe60ecad8afbcfd9482a992CAS | 21412339PubMed |

Lobo, V., Rao, P., Gajbhiye, R., Kulkarni, V., and Parte, P. (2015). Glucose regulated protein 78 phosphorylation in sperm undergoes dynamic changes during maturation. PLoS One 10, e0141858.
Glucose regulated protein 78 phosphorylation in sperm undergoes dynamic changes during maturation.Crossref | GoogleScholarGoogle Scholar | 26618558PubMed |

Luconi, M., Krausz, C., Barni, T., Vannelli, G. B., Forti, G., and Baldi, E. (1998). Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa. Mol. Hum. Reprod. 4, 251–258.
Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFSktbw%3D&md5=896d533329856923a4cf0d28acb84ecfCAS | 9570271PubMed |

Martínez-Heredia, J., de Mateo, S., Vidal-Taboada, J. M., Ballescà, J. L., and Oliva, R. (2008). Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 23, 783–791.
Identification of proteomic differences in asthenozoospermic sperm samples.Crossref | GoogleScholarGoogle Scholar | 18281682PubMed |

Mitra, K., Rangaraj, N., and Shivaji, S. (2005). Novelty of the pyruvate metabolic enzyme dihydrolipoamide dehydrogenase in spermatozoa: correlation of its localization, tyrosine phosphorylation, and activity during sperm capacitation. J. Biol. Chem. 280, 25 743–25 753.
Novelty of the pyruvate metabolic enzyme dihydrolipoamide dehydrogenase in spermatozoa: correlation of its localization, tyrosine phosphorylation, and activity during sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslyks7w%3D&md5=844b1285d3b647175d8929e3c265699dCAS |

Miyata, H., Satouh, Y., Mashiko, D., Muto, M., Nozawa, K., Shiba, K., Fujihara, Y., Isotani, A., Inaba, K., and Ikawa, M. (2015). Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science 350, 442–445.
Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Ors7bO&md5=878cb603722c87c53bf400db21713e1fCAS | 26429887PubMed |

O’Toole, C. M., Roldan, E. R., and Fraser, L. R. Z. (1996). Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa. Mol. Hum. Reprod. 2, 921–927.
Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Okt7w%3D&md5=073f9fd38c275a4a94afc9c2a401fb8fCAS | 9237235PubMed |

Obenauer, J. C., Cantley, L. C., and Yaffe, M. B. (2003). ScanSite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641.
ScanSite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWju74%3D&md5=427416c4d5837f675af6c8aeb775002fCAS | 12824383PubMed |

Parte, P. P., Rao, P., Redij, S., Lobo, V., D’Souza, S. J., Gajbhiye, R., and Kulkarni, V. (2012). Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J. Proteomics 75, 5861–5871.
Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgs7fK&md5=7c30aaed9afb3f5e2f09d01355f5185cCAS | 22796355PubMed |

Rashid, S., Breckle, R., Hupe, M., Geisler, S., Doerwald, N., and Neesen, J. (2006). The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol. Reprod. Dev. 73, 784–794.
The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVWqsLs%3D&md5=8373aea5073bd5767d98db8b636bca88CAS | 16496424PubMed |

Rashid, S., Grzmil, P., Drenckhahn, J. D., Meinhardt, A., Adham, I., Engel, W., and Neesen, J. (2010). Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia. Reproduction 139, 99–111.
Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmsw%3D%3D&md5=cf16e56d11313bbce4094dc24f52da3dCAS | 19778998PubMed |

Sagare-Patil, V., and Modi, D. (2013). Progesterone activates Janus kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa. Andrologia 45, 178–186.
Progesterone activates Janus kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1arsb0%3D&md5=9038771ccd5e0c36cd7464c76612297eCAS | 22748021PubMed |

Sagare-Patil, V., Galvankar, M., Satiya, M., Bhandari, B., Gupta, S. K., and Modi, D. (2012). Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa. Int. J. Androl. 35, 633–644.
Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlehsb7P&md5=e5b6bbd5c2989e00e8641babeac44457CAS | 22775762PubMed |

Sagare-Patil, V., Vernekar, M., Galvankar, M., and Modi, D. (2013). Progesterone utilizes the PI3K-AKT pathway in human spermatozoa to regulate motility and hyperactivation but not acrosome reaction. Mol. Cell. Endocrinol. 374, 82–91.
Progesterone utilizes the PI3K-AKT pathway in human spermatozoa to regulate motility and hyperactivation but not acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptV2jt7c%3D&md5=e3758c0fca26987856a545e2061e3215CAS | 23623968PubMed |

Shah, C. A., Modi, D., Gadkar, S., Sachdeva, G., D’ Souza, S., and Puri, C. P. (2005). N-Terminal region of progesterone receptor B isoform in human spermatozoa. Int. J. Androl. 28, 360–371.
N-Terminal region of progesterone receptor B isoform in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGitL7F&md5=99142e83fd879a1a192b069c522b1ea2CAS |

Signorelli, J., Diaz, E. S., and Morales, P. (2012). Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 349, 765–782.
Kinases, phosphatases and proteases during sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yltbrJ&md5=eb89d682b018642a01cfbde89a969127CAS | 22427115PubMed |

Siva, A. B., Kameshwari, D. B., Singh, V., Pavani, K., Sundaram, C. S., Rangaraj, N., Deenadayal, M., and Shivaji, S. (2010). Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol. Hum. Reprod. 16, 452–462.
Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyjsbg%3D&md5=38613d79015a879bbb0e6406bb09111dCAS | 20304782PubMed |

Strünker, T., Goodwin, N., Brenker, C., Kashikar, N. D., Weyand, I., Seifert, R., and Kaupp, U. B. (2011). The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471, 382–386.
The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm.Crossref | GoogleScholarGoogle Scholar | 21412338PubMed |

Suzuki, T., Fujinoki, M., Shibahara, H., and Suzuki, M. (2010). Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 139, 847–856.
Regulation of hyperactivation by PPP2 in hamster spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLs%3D&md5=dd6a4e7cd7c65d6cf7e724546a84793cCAS | 20185533PubMed |

Tamburrino, L., Marchiani, S., Minetti, F., Forti, G., Muratori, M., and Baldi, E. (2014). The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Hum. Reprod. 29, 418–428.
The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Chtrw%3D&md5=82b552362cffbb8d34785c7e70fc8adfCAS | 24430778PubMed |

Tamburrino, L., Marchiani, S., Vicini, E., Muciaccia, B., Cambi, M., Pellegrini, S., Forti, G., Muratori, M., and Baldi, E. (2015). Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters. Hum. Reprod. 30, 1532–1544.
Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MfkvFCltw%3D%3D&md5=ea54494cd6371cd5e89d18ea9e499e06CAS | 25983333PubMed |

Tanaka, H., Kohroki, J., Iguchi, N., Onishi, M., and Nishimune, Y. (2002). Cloning and characterization of a human orthologue of testis-specific succinyl CoA:3-oxo acid CoA transferase (Scot-t) cDNA. Mol. Hum. Reprod. 8, 16–23.
Cloning and characterization of a human orthologue of testis-specific succinyl CoA:3-oxo acid CoA transferase (Scot-t) cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWmsbg%3D&md5=6ce9ec035463e8a7deeda6d65d4b5fcaCAS | 11756565PubMed |

Teves, M. E., Barbano, F., Guidobaldi, H. A., Sanchez, R., Miska, W., and Giojalas, L. C. (2006). Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil. Steril. 86, 745–749.
Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqsLzJ&md5=c84ce8b27b327ec29eb16ea3a1c2776fCAS | 16784744PubMed |

Visconti, P. E., Krapf, D., de la Vega-Beltrán, J. L., Acevedo, J. J., and Darszon, A. (2011). Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 13, 395–405.
Ion channels, phosphorylation and mammalian sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFGrtrc%3D&md5=34ac67bba98c554927da3bd993bfe442CAS | 21540868PubMed |

Xiao, J. H., Yin, L. L., Li, J. M., Zhu, H., Zhou, Z. M., Zhao, B. G., and Sha, J. H. (2002). Molecular cloning, identification and characteristics of NYD-SP9: gene coding protein kinase presumably involved in spermatogenesis. Chin. Sci. Bull. 47, 896–901.
Molecular cloning, identification and characteristics of NYD-SP9: gene coding protein kinase presumably involved in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlGlu7w%3D&md5=d2097a8d44cab968b109b652615caf31CAS |

Zhang, Q., Nishimura, D., Seo, S., Vogel, T., Morgan, D. A., Searby, C., Bugge, K., Stone, E. M., Rahmouni, K., and Sheffield, V. C. (2011). Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl Acad. Sci. USA 108, 20 678–20 683.
Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Kruw%3D%3D&md5=b72068f9714dce244788df251f719619CAS |