Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Proteome of equine oviducal fluid: effects of ovulation and pregnancy

Katrien Smits A C , Hilde Nelis A , Katleen Van Steendam B , Jan Govaere A , Kim Roels A , Cyrillus Ververs A , Bart Leemans A , Eline Wydooghe A , Dieter Deforce B and Ann Van Soom A
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

B Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium.

C Corresponding author. Email: katrien.smits@ugent.be

Reproduction, Fertility and Development 29(6) 1085-1095 https://doi.org/10.1071/RD15481
Submitted: 18 November 2015  Accepted: 25 February 2016   Published: 28 April 2016

Abstract

The equine oviduct plays a pivotal role in providing the optimal microenvironment for early embryonic development, but little is known about the protein composition of the oviducal fluid in the horse. The aim of the present study was to provide a large-scale identification of proteins in equine oviducal fluid and to determine the effects of ovulation and pregnancy. Four days after ovulation, the oviducts ipsilateral and contralateral to the ovulation side were collected from five pregnant and five non-pregnant mares. Identification and relative quantification of proteins in the oviducal fluid of the four groups was achieved by isobaric tags for relative and absolute quantification (iTRAQ) labelling and HPLC–tandem mass spectrometry. The presence of an embryo in the ipsilateral oviducal fluid of pregnant mares induced upregulation of 11 and downregulation of two proteins compared with the contralateral side, and upregulation of 19 proteins compared with the ipsilateral side of non-pregnant mares. Several of these upregulated proteins are related to early pregnancy in other species. The present study represents the first high-throughput identification of proteins in the oviducal fluid of the mare. The results support the hypothesis that the equine embryo interacts with the oviduct, affecting the maternal secretion pattern of proteins involved in pregnancy-related pathways.

Additional keywords: embryo, horse, oviduct, proteomics.


References

Ababneh, M. M., and Troedsson, M. H. (2013). Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares. Reprod. Domest. Anim. 48, 46–52.
Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOht74%3D&md5=8353c965ff1df1319ed3b16802af12dbCAS | 22486770PubMed |

Aguilar, J., and Reyley, M. (2005). The uterine tubal fluid: secretion, composition and biological effects. Anim. Reprod. 2, 91–105.

Akison, L. K., Boden, M. J., Kennaway, D. J., Russell, D. L., and Robker, R. L. (2014). Progesterone receptor-dependent regulation of genes in the oviducts of female mice. Physiol. Genomics 46, 583–592.
Progesterone receptor-dependent regulation of genes in the oviducts of female mice.Crossref | GoogleScholarGoogle Scholar | 24916968PubMed |

Allen, W. R., and Rowson, L. E. (1975). Surgical and non-surgical egg transfer in horses. J. Reprod. Fertil. Suppl. Oct, 525–530.

Almiñana, C., Heath, P. R., Wilkinson, S., Sanchez-Osorio, J., Cuello, C., Parrilla, I., Gil, M. A., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., and Fazeli, A. (2012). Early developing pig embryos mediate their own environment in the maternal tract. PLoS One 7, e33625.
Early developing pig embryos mediate their own environment in the maternal tract.Crossref | GoogleScholarGoogle Scholar | 22470458PubMed |

Ambruosi, B., Accogli, G., Douet, C., Canepa, S., Pascal, G., Monget, P., Moros, C., Holmskov, U., Mollenhauer, J., Robbe-Masselot, C., Vidal, O., Desantis, S., and Goudet, G. (2013). Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species. Reproduction 146, 119–133.
Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSnsb7J&md5=e7cd8466dc8d582336773ce94895076eCAS | 23722152PubMed |

Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar | 20584881PubMed |

Ball, B. A., Scoggin, K. E., Troedsson, M. H. T., and Squires, E. L. (2013). Characterization of prostaglandin E-2 receptors (EP2, EP4) in the horse oviduct. Anim. Reprod. Sci. 142, 35–41.
Characterization of prostaglandin E-2 receptors (EP2, EP4) in the horse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyltbvL&md5=f7fae465878a7d1be4e43881468604e1CAS | 24035156PubMed |

Barrientos, G., Freitag, N., Tirado-Gonzalez, I., Unverdorben, L., Jeschke, U., Thijssen, V. L., and Blois, S. M. (2014). Involvement of galectin-1 in reproduction: past, present and future. Hum. Reprod. Update 20, 175–193.
Involvement of galectin-1 in reproduction: past, present and future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Wkt74%3D&md5=437172b36829bb6b33399f99fc0013f6CAS | 24077937PubMed |

Battut, I., Colchen, S., Fieni, F., Tainturier, D., and Bruyas, J. F. (1997). Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet. J. Suppl. Dec, 60–62.

Beier, H. M. (1968). Uteroglobin: a hormone-sensitive endometrial protein involved in blastocyst development. Biochim. Biophys. Acta 160, 289–291.
Uteroglobin: a hormone-sensitive endometrial protein involved in blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVahsrY%3D&md5=088849f2f012217df99bdbc82063a139CAS | 5658137PubMed |

Beier‐Hellwig, K., Kremer, H., Bonn, B., Linder, D., Bader, H., and Beier, H. M. (1995). Partial sequencing and identification of three proteins from equine uterine secretion regulated by progesterone. Reprod. Domest. Anim. 30, 295–298.
Partial sequencing and identification of three proteins from equine uterine secretion regulated by progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Oqs7g%3D&md5=96cce56b547a179751d0ff81bd429941CAS |

Besenfelder, U., Havlicek, V., and Brem, G. (2012). Role of the oviduct in early embryo development. Reprod. Domest. Anim. 47, 156–163.
Role of the oviduct in early embryo development.Crossref | GoogleScholarGoogle Scholar | 22827365PubMed |

Betteridge, K. J. (1995). Phylogeny, ontogeny and embryo transfer. Theriogenology 44, 1061–1098.
Phylogeny, ontogeny and embryo transfer.Crossref | GoogleScholarGoogle Scholar |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=845d813fbb90353ab809ae1328e08e83CAS | 10729726PubMed |

Campbell, D. L., Douglas, L. W., and Ramge, J. C. (1979). Cannulation of the equine oviduct and chemical analysis of oviduct fluid. Theriogenology 12, 47–59.
Cannulation of the equine oviduct and chemical analysis of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFCru70%3D&md5=cb97386ba4c528d8be65323f8c0a59bfCAS | 16725431PubMed |

Colaert, N., Helsens, K., Impens, F., Vandekerckhove, J., and Gevaert, K. (2010). Rover: a tool to visualize and validate quantitative proteomics data from different sources. Proteomics 10, 1226–1229.
Rover: a tool to visualize and validate quantitative proteomics data from different sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFalu74%3D&md5=a06140e01c1d584c14fbdaaccb0e1410CAS | 20058247PubMed |

Colnot, C., Fowlis, D., Ripoche, M. A., Bouchaert, I., and Poirier, F. (1998). Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev. Dyn. 211, 306–313.
Embryonic implantation in galectin 1/galectin 3 double mutant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFSlu78%3D&md5=36fb356f0173e7e6ba2fa86c907c2abdCAS | 9566950PubMed |

Côté, O., Lillie, B. N., Hayes, M. A., Clark, M. E., van den Bosch, L., Katavolos, P., Viel, L., and Bienzle, D. (2012). Multiple secretoglobin 1A1 genes are differentially expressed in horses. BMC Genomics 13, 712.
Multiple secretoglobin 1A1 genes are differentially expressed in horses.Crossref | GoogleScholarGoogle Scholar | 23253434PubMed |

Coy, P., Garcia-Vazquez, F. A., Visconti, P. E., and Aviles, M. (2012). Roles of the oviduct in mammalian fertilization. Reproduction 144, 649–660.
Roles of the oviduct in mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOitb%2FP&md5=c9baa99fe5b5870f257a31787daaa3bfCAS | 23028122PubMed |

Desantis, S., Ventriglia, G., Zizza, S., Guaricci, A. C., Losurdo, M., Zarrilli, A., and Albrizio, M. (2010). Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus. Anim. Reprod. Sci. 119, 40–49.
Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Kjs7c%3D&md5=c8c7b46c60c4233f78fc9da2e735e6d0CAS | 20036785PubMed |

Dun, M. D., Smith, N. D., Baker, M. A., Lin, M., Aitken, R. J., and Nixon, B. (2011). The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J. Biol. Chem. 286, 36 875–36 887.
The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSqtLrJ&md5=d810d707ba5bbdf00348cb8859876a46CAS |

Ellenberger, C., Wilsher, S., Allen, W. R., Hoffmann, C., Kolling, M., Bazer, F. W., Klug, J., Schoon, D., and Schoon, H. A. (2008). Immunolocalisation of the uterine secretory proteins uterocalin, uteroferrin and uteroglobin in the mare’s uterus and placenta throughout pregnancy. Theriogenology 70, 746–757.
Immunolocalisation of the uterine secretory proteins uterocalin, uteroferrin and uteroglobin in the mare’s uterus and placenta throughout pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVamt7%2FP&md5=ce2f3bc18b84363460350ffa295bbf5bCAS | 18547636PubMed |

Engle, C. C., and Foley, C. W. (1975). Certain physiochemical properties of uterine tubal fluid, follicular fluid, and blood plasma in the mare. Am. J. Vet. Res. 36, 149–154.
| 1:CAS:528:DyaE2MXht1alsro%3D&md5=d71425a37c8a06b5ce5780778c8c4cb0CAS | 1167439PubMed |

Engle, C. C., Witherspoon, D. M., and Foley, C. W. (1970). Technique for continuous collection of equine oviduct secretions. Am. J. Vet. Res. 31, 1889–1896.
| 1:STN:280:DyaE3M%2FgsV2htg%3D%3D&md5=7088601d000559d4b0a4d3950903c31dCAS | 5528342PubMed |

Engle, C. C., Foley, C. W., Plotka, E. D., and Witherspoon, D. M. (1984). Free amino acids and protein concentrations in reproductive tract fluids of the mare. Theriogenology 21, 919–930.
Free amino acids and protein concentrations in reproductive tract fluids of the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVyisrY%3D&md5=26804288d51a73d25dd9d03e066a6d31CAS |

Faulkner, S., Elia, G., Mullen, M. P., O’Boyle, P., Dunn, M. J., and Morris, D. (2012). A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 12, 2014–2023.
A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12rtbo%3D&md5=50d819097459468961befd99147dc9efCAS | 22623423PubMed |

Fazeli, A., Moein Vaziri, N., and Holt, W. V. (2015). Proteomics of the periconception milieu. Proteomics 15, 649–655.
Proteomics of the periconception milieu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtVyltA%3D%3D&md5=d7519fe03c853a33c290bacc1b93a3b6CAS | 25404351PubMed |

Feigelson, M., Noske, I. G., Goswami, A. K., and Kay, E. (1977). Reproductive tract fluid proteins and their hormonal control. Ann. N. Y. Acad. Sci. 286, 273–286.
Reproductive tract fluid proteins and their hormonal control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvVenu7c%3D&md5=371217fa9c5a482f2b03e44e31d84f0aCAS |

Forde, N., McGettigan, P. A., Mehta, J. P., O’Hara, L., Mamo, S., Bazer, F. W., Spencer, T., and Lonergan, P. (2014). Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 147, 575–587.
Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGntbo%3D&md5=80762406a81010dd9db7ce774f75bd1cCAS | 24478148PubMed |

Gąsiorowska, E., Walkowiak, G. P., Warchoł, W., Lemańska, A., Jankowska, A., and Nowak-Markwitz, E. (2015). Ovarian cancer and normal fallopian tube high WFDC2 expression does not correlate with HE4 serum level. Ginekol. Pol. 86, 335–339.
Ovarian cancer and normal fallopian tube high WFDC2 expression does not correlate with HE4 serum level.Crossref | GoogleScholarGoogle Scholar | 26117969PubMed |

Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
Gametes alter the oviductal secretory proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgtb%2FK&md5=2b86b589ce479786641423178a101c9cCAS | 16105986PubMed |

Georgiou, A. S., Snijders, A. P., Sostaric, E., Aflatoonian, R., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., Wright, P. C., and Fazeli, A. (2007). Modulation of the oviductal environment by gametes. J. Proteome Res. 6, 4656–4666.
Modulation of the oviductal environment by gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu73O&md5=f3a99d927620048e7117ffd20e659510CAS | 18004800PubMed |

Goudet, G. (2011). Fertilisation in the horse and paracrine signalling in the oviduct. Reprod. Fertil. Dev. 23, 941–951.
Fertilisation in the horse and paracrine signalling in the oviduct.Crossref | GoogleScholarGoogle Scholar | 22127000PubMed |

Grundmann, U., Amann, E., Abel, K. J., and Kupper, H. A. (1988). Isolation and expression of cDNA coding for a new member of the phospholipase A2 inhibitor family. Behring Inst. Mitt. Apr, 59–67.

Gucer, F., Kiran, G., Canaz, E., Kilinc, M., Ekerbicer, H. C., Avci, F., Kiran, H., Coskun, A., and Arikan, D. C. (2015). Serum human epididymis protein 4 can be a useful tumor marker in the differential diagnosis of adnexal masses during pregnancy: a pilot study. Eur. J. Gynaecol. Oncol. 36, 406–409.
| 1:STN:280:DC%2BC283ktlOluw%3D%3D&md5=80ca7b8e3cc4ccd2f4976610df4bf856CAS | 26390692PubMed |

Gutiérrez-Aguilar, M., and Baines, C. P. (2013). Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem. J. 454, 371–386.
Physiological and pathological roles of mitochondrial SLC25 carriers.Crossref | GoogleScholarGoogle Scholar | 23988125PubMed |

Hayes, M. A., Quinn, B. A., Keirstead, N. D., Katavolos, P., Waelchli, R. O., and Betteridge, K. J. (2008). Proteins associated with the early intrauterine equine conceptus. Reprod. Domest. Anim. 43, 232–237.
Proteins associated with the early intrauterine equine conceptus.Crossref | GoogleScholarGoogle Scholar | 18638129PubMed |

Hess, A. P., Talbi, S., Hamilton, A. E., Baston-Buest, D. M., Nyegaard, M., Irwin, J. C., Barragan, F., Kruessel, J. S., Germeyer, A., and Giudice, L. C. (2013). The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reprod. Biomed. Online 27, 423–435.
The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12itLjO&md5=0c114d27fba73016a6eb4df49741ddeaCAS | 23953067PubMed |

Hirosawa, N., Yano, K., Suzuki, Y., and Sakamoto, Y. (2006). Endocrine disrupting effect of di-(2-ethylhexyl)phthalate on female rats and proteome analyses of their pituitaries. Proteomics 6, 958–971.
Endocrine disrupting effect of di-(2-ethylhexyl)phthalate on female rats and proteome analyses of their pituitaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFWku7c%3D&md5=9b8e826a83447c8a58d5d3689f3a620bCAS | 16400681PubMed |

Holt, W. V., and Fazeli, A. (2010). The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77, 934–943.
The oviduct as a complex mediator of mammalian sperm function and selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCktrnL&md5=43d44c3f53d799c219aa6a7c1d0024f1CAS | 20886635PubMed |

Hunter, R. H. F. (1994). Modulation of gamete and embryonic microenvironments by oviduct glycoproteins. Mol. Reprod. Dev. 39, 176–181.
Modulation of gamete and embryonic microenvironments by oviduct glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFWqtbo%3D&md5=f81bca6da4e341f0309dbbae01e26b68CAS |

Hunter, R. H. F. (1998). Have the fallopian tubes a vital role in promoting fertility? Acta Obstet. Gynecol. Scand. 77, 475–486.
Have the fallopian tubes a vital role in promoting fertility?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czhs1Ogug%3D%3D&md5=1a3340da74f3ea08c7fef8c2ee46f8d6CAS |

Inohara, H., Akahani, S., Koths, K., and Raz, A. (1996). Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res. 56, 4530–4534.
| 1:CAS:528:DyaK28XmtVyltbk%3D&md5=0582de1b7cb6eb2951fed5e270d1ed19CAS | 8813152PubMed |

Kayser, J. P., Kim, J. G., Cerny, R. L., and Vallet, J. L. (2006). Global characterization of porcine intrauterine proteins during early pregnancy. Reproduction 131, 379–388.
Global characterization of porcine intrauterine proteins during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsbo%3D&md5=dcb42f2bf83f4b4ac0d493a037cc049dCAS | 16452731PubMed |

Kikukawa, T., Cowan, B. D., Tejada, R. I., and Mukherjee, A. B. (1988). Partial characterization of a uteroglobin-like protein in the human uterus and its temporal relationship to prostaglandin levels in this organ. J. Clin. Endocrinol. Metab. 67, 315–321.
Partial characterization of a uteroglobin-like protein in the human uterus and its temporal relationship to prostaglandin levels in this organ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVyjs74%3D&md5=343601f5028df037440ff6c44e422073CAS | 3292559PubMed |

Kim, M., Kim, S., Kim, H., Joo, H. G., and Shin, T. (2008). Immunohistochemical localization of galectin-3 in the reproductive organs of the cow. Acta Histochem. 110, 473–480.
Immunohistochemical localization of galectin-3 in the reproductive organs of the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGgsb0%3D&md5=14feef667304fe6e5e9b605bc956f5e0CAS | 18541290PubMed |

Kirchner, C. (1976). Uteroglobin in the rabbit. I. Intracellular localization in the oviduct, uterus, and preimplantation blastocyst. Cell Tissue Res. 170, 415–424.
Uteroglobin in the rabbit. I. Intracellular localization in the oviduct, uterus, and preimplantation blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsFOhu7o%3D&md5=beaa6338af943912afb4057a4345f718CAS | 782713PubMed |

Klein, C., and Troedsson, M. H. (2011). Transcriptional profiling of equine conceptuses reveals new aspects of embryo–maternal communication in the horse. Biol. Reprod. 84, 872–885.
Transcriptional profiling of equine conceptuses reveals new aspects of embryo–maternal communication in the horse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGju7Y%3D&md5=c43f5abfe38c85f68c51ebb83c70e616CAS | 21209420PubMed |

Klein, C., Scoggin, K. E., Ealy, A. D., and Troedsson, M. H. (2010). Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biol. Reprod. 83, 102–113.
Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqtLc%3D&md5=1b419d6818297531edee2c1dd396b791CAS | 20335638PubMed |

Koch, J. M., Ramadoss, J., and Magness, R. R. (2010). Proteomic profile of uterine luminal fluid from early pregnant ewes. J. Proteome Res. 9, 3878–3885.
Proteomic profile of uterine luminal fluid from early pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCitrs%3D&md5=b485b813f1619439d2dd70d19415ae74CAS | 20578732PubMed |

Krishnan, R. S. (1971). Effect of passivie administration of antiblastokinin on blastocyst development and maintenance of pregnancy in rabbits. Experientia 27, 955–956.
Effect of passivie administration of antiblastokinin on blastocyst development and maintenance of pregnancy in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltVOlsbc%3D&md5=26dafa61f78c68db359d12ac631cef8dCAS | 5004467PubMed |

Krishnan, R. S., and Daniel, J. C. (1967). ‘Blastokinin’: inducer and regulator of blastocyst development in the rabbit uterus. Science 158, 490–492.
‘Blastokinin’: inducer and regulator of blastocyst development in the rabbit uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltFCrsLc%3D&md5=92da446980a287eb7819a308a9ac4f0cCAS | 6048103PubMed |

Lee, K. F., and Yeung, W. S. (2006). Gamete/embryo–oviduct interactions: implications on in vitro culture. Hum. Fertil. 9, 137–143.
Gamete/embryo–oviduct interactions: implications on in vitro culture.Crossref | GoogleScholarGoogle Scholar |

Lee, K. F., Yao, Y. Q., Kwok, K. L., Xu, J. S., and Yeung, W. S. B. (2002). Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochem. Biophys. Res. Commun. 292, 564–570.
Early developing embryos affect the gene expression patterns in the mouse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFeitL8%3D&md5=52b2db2ed16ef1797b0c4bf173f7c3dcCAS | 11906198PubMed |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
The formation and function of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=84fc6944f81c3f63ef1ef0571e91939cCAS | 3283349PubMed |

Levin, S. W., Butler, J. D., Schumacher, U. K., Wightman, P. D., and Mukherjee, A. B. (1986). Uteroglobin inhibits phospholipase A2 activity. Life Sci. 38, 1813–1819.
Uteroglobin inhibits phospholipase A2 activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitF2gtLo%3D&md5=49d987265d021b0c5f525ee6062a19ceCAS | 3084897PubMed |

Mandal, A. K., Ray, R., Zhang, Z., Chowdhury, B., Pattabiraman, N., and Mukherjee, A. B. (2005). Uteroglobin inhibits prostaglandin F2alpha receptor-mediated expression of genes critical for the production of pro-inflammatory lipid mediators. J. Biol. Chem. 280, 32 897–32 904.
Uteroglobin inhibits prostaglandin F2alpha receptor-mediated expression of genes critical for the production of pro-inflammatory lipid mediators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiur3F&md5=b38734ac64c688605155c0b301ac1efdCAS |

McDowell, K. J., Adams, M. H., and Williams, N. M. (1993). Characterization of equine oviductal proteins synthesized and released at estrus and at Day 4 after ovulation in bred and nonbred mares. J. Exp. Zool. 267, 217–224.
Characterization of equine oviductal proteins synthesized and released at estrus and at Day 4 after ovulation in bred and nonbred mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1ei&md5=a9badc01be72eb6fb84b0781f1eab3dbCAS | 8409902PubMed |

Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., Handler, J., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7%2FF&md5=35ca7fed53ef7bfc9304e2d2823901deCAS | 20631402PubMed |

Mi, H. Y., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566.
Large-scale gene function analysis with the PANTHER classification system.Crossref | GoogleScholarGoogle Scholar |

Müller-Schöttle, F., Bogusz, A., Grotzinger, J., Herrler, A., Krusche, C. A., Beier-Hellwig, K., and Beier, H. M. (2002). Full-length complementary DNA and the derived amino acid sequence of horse uteroglobin. Biol. Reprod. 66, 1723–1728.
Full-length complementary DNA and the derived amino acid sequence of horse uteroglobin.Crossref | GoogleScholarGoogle Scholar | 12021053PubMed |

Muñoz, M., Corrales, F. J., Caamano, J. N., Diez, C., Trigal, B., Mora, M. I., Martin, D., Carrocera, S., and Gomez, E. (2012). Proteome of the early embryo–maternal dialogue in the cattle uterus. J. Proteome Res. 11, 751–766.
Proteome of the early embryo–maternal dialogue in the cattle uterus.Crossref | GoogleScholarGoogle Scholar | 22148898PubMed |

Nelis, H., Wojciechowicz, B., Franczak, A., Leemans, B., D’Herde, K., Goossens, K., Cornillie, P., Peelman, L., Van Soom, A., and Smits, K. (2015). Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reprod. Fertil. Dev. , .
Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro.Crossref | GoogleScholarGoogle Scholar | 26085435PubMed |

Poirier, F., and Kimber, S. (1997). Cell surface carbohydrates and lectins in early development. Mol. Hum. Reprod. 3, 907–918.
Cell surface carbohydrates and lectins in early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsl2isLo%3D&md5=3d6dfde61903f6dc36ef084763575b90CAS | 9395265PubMed |

Pomar, F. J., Teerds, K. J., Kidson, A., Colenbrander, B., Tharasanit, T., Aguilar, B., and Roelen, B. A. (2005). Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–2268.
Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrtbg%3D&md5=c8b624ed55a1f50dcbfa78e94bcc7682CAS | 15826688PubMed |

Quinn, B. A., Hayes, M. A., Waelchli, R. O., Kennedy, M. W., and Betteridge, K. J. (2007). Changes in major proteins in the embryonic capsule during immobilization (fixation) of the conceptus in the third week of pregnancy in the mare. Reproduction 134, 161–170.
Changes in major proteins in the embryonic capsule during immobilization (fixation) of the conceptus in the third week of pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGisL4%3D&md5=e45f5751ca6f48db6943e203e62e3e2cCAS | 17641098PubMed |

Rakeman, A. S., and Anderson, K. V. (2006). Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development 133, 3075–3083.
Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVart77O&md5=07c00e8930853081a7d90fbd7d5cd642CAS | 16831833PubMed |

Riffo, M., Gonzalez, K. D., and Nieto, A. (2007). Uteroglobin induces the development and cellular proliferation of the mouse early embryo. J. Exp. Zool. A. Ecol. Genet. Physiol. 307A, 28–34.
Uteroglobin induces the development and cellular proliferation of the mouse early embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yku74%3D&md5=4e247c0b2bbd1ad564318e90354debe5CAS |

Roldán, M. L., and Marini, P. E. (2014). First evidence of the interaction between deleted in malignant brain tumor 1 and galectin-3 in the mammalian oviduct. Histochem. Cell Biol. 141, 181–190.
First evidence of the interaction between deleted in malignant brain tumor 1 and galectin-3 in the mammalian oviduct.Crossref | GoogleScholarGoogle Scholar | 24065275PubMed |

Salomonis, N., Cotte, N., Zambon, A. C., Pollard, K. S., Vranizan, K., Doniger, S. W., Dolganov, G., and Conklin, B. R. (2005). Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 6, R12.
Identifying genetic networks underlying myometrial transition to labor.Crossref | GoogleScholarGoogle Scholar | 15693941PubMed |

Seytanoglu, A., Georgiou, A. S., Sostaric, E., Watson, P. F., Holt, W. V., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
Oviductal cell proteome alterations during the reproductive cycle in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=b1832d42e2b809642bfdcf951437815bCAS | 18540664PubMed |

Smits, K., Goossens, K., Van Soom, A., Govaere, J., Hoogewijs, M., and Peelman, L. J. (2011). In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reprod. Fertil. Dev. 23, 364–375.
In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeruw%3D%3D&md5=b7245db222b36a419523b90901c1e319CAS | 21211470PubMed |

Smits, K., Govaere, J., Peelman, L. J., Goossens, K., de Graaf, D. C., Vercauteren, D., Vandaele, L., Hoogewijs, M., Wydooghe, E., Stout, T., and Van Soom, A. (2012). Influence of the uterine environment on the development of in vitro-produced equine embryos. Reproduction 143, 173–181.
Influence of the uterine environment on the development of in vitro-produced equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt7o%3D&md5=3b2c1941311e6ce5a0d74a18fdd22a20CAS | 22089531PubMed |

Smits, K., De Coninck, D. I., Van Nieuwerburgh, F., Govaere, J., Van Poucke, M., Peelman, L., Deforce, D., and Van Soom, A. (2016). The equine embryo influences immune related gene expression in the oviduct. Biol. Reprod. 94, 36.
The equine embryo influences immune related gene expression in the oviduct.Crossref | GoogleScholarGoogle Scholar | 26740593PubMed |

Tirado-González, I., Freitag, N., Barrientos, G., Shaikly, V., Nagaeva, O., Strand, M., Kjellberg, L., Klapp, B. F., Mincheva-Nilsson, L., and Cohen, M. (2013). Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol. Hum. Reprod. 19, 43–53.
Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy.Crossref | GoogleScholarGoogle Scholar | 23002109PubMed |

Tremoleda, J. L., Stout, T. A., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=4f590dca167f4fc67f559904a7b68e49CAS | 12904313PubMed |

Tweedie-Cullen, R. Y., and Livingstone-Zatchej, M. (2008). Quantitative analysis of protein expression using iTRAQ and mass spectrometry. Protocol Exchange , .
Quantitative analysis of protein expression using iTRAQ and mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

van Niekerk, C. H., and Gerneke, W. H. (1966). Persistence and parthenogentic cleavage of tubal ova in the mare. Onderstepoort J. Vet. Res. 33, 195–232.
| 1:STN:280:DyaF2s7ntVenuw%3D%3D&md5=4a574275f7781aa51baf27c8f82667b3CAS | 6007779PubMed |

Van Steendam, K., De Ceuleneer, M., Dhaenens, M., Van Hoofstat, D., and Deforce, D. (2013). Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int. J. Legal Med. 127, 287–298.
Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science.Crossref | GoogleScholarGoogle Scholar | 22843116PubMed |

Van Steendam, K., De Wulf, O., Dhaenens, M., and Deforce, D. (2014). Species identification from hair by means of spectral library searches. Int. J. Legal Med. 128, 873–878.
Species identification from hair by means of spectral library searches.Crossref | GoogleScholarGoogle Scholar | 24817150PubMed |

Varner, D. D., Forrest, D. W., Fuentes, F., Taylor, T. S., Hooper, R. N., Brinsko, S. P., and Blanchard, T. L. (1991). Measurements of glycosaminoglycans in follicular, oviductal and uterine fluids of mares. J. Reprod. Fertil. Suppl. 44, 297–306.
| 1:CAS:528:DyaK38Xks1Ogtrc%3D&md5=9870666905cfdbf690ae8a3b4ffa710eCAS | 1795274PubMed |

Weber, J. A., Freeman, D. A., Vanderwall, D. K., and Woods, G. L. (1991). Prostaglandin E2 hastens oviductal transport of equine embryos. Biol. Reprod. 45, 544–546.
Prostaglandin E2 hastens oviductal transport of equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvF2msLs%3D&md5=393a557485b3654353934063c3f29544CAS | 1751628PubMed |

Weber, J. A., Woods, G. L., Freeman, D. A., and Vanderwall, D. K. (1993). Oviductal and uterine influence on the development of Day-2 equine embryos in vivo and in vitro. Theriogenology 40, 689–698.
Oviductal and uterine influence on the development of Day-2 equine embryos in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWisA%3D%3D&md5=261f18054fadf10d7dc73631e807b7bfCAS | 16727351PubMed |

Willis, P., Sekhar, K. N., Brooks, P., and Fayrer-Hosken, R. A. (1994). Electrophoretic characterization of equine oviductal fluid. J. Exp. Zool. 268, 477–485.
Electrophoretic characterization of equine oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3jtFWmsg%3D%3D&md5=dd4f9654cd97c224759ffe8193757197CAS | 8176362PubMed |

Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., Hodge, C. L., Haase, J., Janes, J., Huss, J. W., and Su, A. I. (2009). BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R30.
BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources.Crossref | GoogleScholarGoogle Scholar |