Antioxidant treatment during manipulation procedures prevents mitochondrial and DNA damage and enhances nuclear reprogramming of bovine somatic cell nuclear transfer embryos
Hyo-Kyung Bae A C , In-Sun Hwang A C , Ji-Ye Kim A , Sung-Young Lee A , Choon-Keun Park B , Boo-Keun Yang B and Hee-Tae Cheong A DA College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 200-701, Korea.
B College of Animal Resource Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 200-701, Korea.
C These authors contributed equally to this work.
D Corresponding author: Email: htcheong@kangwon.ac.kr
Reproduction, Fertility and Development 27(7) 1088-1096 https://doi.org/10.1071/RD14027
Submitted: 24 January 2014 Accepted: 18 March 2014 Published: 10 April 2014
Abstract
We tried to prevent the mitochondrial and DNA damage caused by mechanical stress-associated reactive oxygen species (ROS), and to improve the reprogramming of bovine somatic cell nuclear transfer (SCNT) embryos by antioxidant treatment during the manipulation procedures of SCNT. Bovine recipient oocytes and reconstituted oocytes were treated with antioxidants during manipulation procedures. The H2O2 level, mitochondrial morphology, membrane potential and apoptosis at the one-cell stage, and in vitro development and DNA methylation status of blastocysts were evaluated. Antioxidant treatment during manipulation procedures reduced the H2O2 level of SCNT embryos. Antioxidant-treated SCNT embryos normally formed mitochondrial clumps, similar to IVF embryos, and showed higher mitochondrial membrane potential versus the SCNT control (P < 0.05). Apoptosis and DNA fragmentation were reduced by antioxidant treatment. The development rate to the blastocyst stage was higher (P < 0.05) in the antioxidant treatment groups (30.5 ± 2.5 to 30.6 ± 1.6%) versus the control (23.0 ± 1.9%). The DNA methylation status of blastocysts in the antioxidant treatment groups was lower (P < 0.05) than that of the control and similar to that of IVF embryos. These results indicate that antioxidant treatment during manipulation procedures can prevent cellular damage that may be caused by mechanical stress-associated ROS, and improve nuclear reprogramming.
Additional keywords: caspase-3 assay, comet assay.
References
Bae, H. K., Kim, J. Y., Hwang, I. S., Park, C. K., Yang, B. K., and Cheong, H. T. (2012). Inhibition of reactive oxygen species generation by antioxidant treatments during bovine somatic cell nuclear transfer. Reprod. Dev. Biol. 36, 115–120.Brackett, B. G., and Oliphant, G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–274.
| Capacitation of rabbit spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xnt1WltQ%3D%3D&md5=405a502074b02488170f09cd1b31c357CAS | 1122333PubMed |
Carosio, R., Zuccari, G., Orienti, I., Mangraviti, S., and Montaldo, P. G. (2007). Sodium ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake. Mol. Cancer 6, 55.
| Sodium ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake.Crossref | GoogleScholarGoogle Scholar | 17760959PubMed |
Chan, W. H., Yu, J. S., and Yang, S. D. (1999). PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. J. Cell. Physiol. 178, 397–408.
| PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1ertr0%3D&md5=e637ca3d3d50ee68ba5d803b739dbfaaCAS | 9989786PubMed |
Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13 734–13 738.
| Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=e73da2e3bdcb4689b20df1fbac5b40b5CAS |
Favetta, L. A., St. John, E. J., King, W. A., and Betts, D. H. (2007). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med. 42, 1201–1210.
| High levels of p66shc and intracellular ROS in permanently arrested early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGhtb0%3D&md5=04bba82d94651c3bef57ba58d08a4fceCAS | 17382201PubMed |
Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.
| Mitochondria and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVegsLo%3D&md5=995ba3a2deac7ab7ae8dea209a070c58CAS | 9721092PubMed |
Halliwell, B., and Aruoma, O. I. (1991). DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19.
| DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVaisbo%3D&md5=a3dfb097549f49751f43c728bd6867a3CAS | 1849843PubMed |
Hao, Y., Lai, L., Mao, J., Im, G. S., Bonk, A., and Prather, R. S. (2003). Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69, 501–507.
| Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVertbg%3D&md5=ac9b4219ff95c06425060a1c152c600fCAS | 12700186PubMed |
Hashimoto, S., Minami, N., Yamada, M., and Imai, H. (2000). Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilisation: relevance to intracellular reactive oxygen species and glutathione contents. Mol. Reprod. Dev. 56, 520–526.
| Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilisation: relevance to intracellular reactive oxygen species and glutathione contents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslKlur8%3D&md5=77f560d8bcb324702a827ab4d72a8ab9CAS | 10911402PubMed |
Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., and Shin, T. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
| Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=0b08c0b693239c7670371b80e3d1fc0aCAS | 11090450PubMed |
Hua, S., Zhang, H., Song, Y., Li, R., Liu, J., Wang, Y., Quan, F., and Zhang, Y. (2012). High expression of Mfn1 promotes early development of bovine SCNT embryos: improvement of mitochondrial membrane potential and oxidative metabolism. Mitochondrion 12, 320–327.
| High expression of Mfn1 promotes early development of bovine SCNT embryos: improvement of mitochondrial membrane potential and oxidative metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFOhu7k%3D&md5=9b43ac6cca25f585ae0f73a78d406af9CAS | 22245982PubMed |
Huang, Y., Tang, X., Xie, W., Zhou, Y., Li, D., Zhou, Y., Zhu, J., Yuan, T., Lai, L., Pang, D., and Ouyang, H. (2011). Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem. Biophys. Res. Commun. 411, 397–401.
| Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1arsL4%3D&md5=be47946880d35df5f13cad47206dea68CAS | 21749856PubMed |
Hwang, I. S., Bae, B. K., Park, C. K., Yang, B. K., and Cheong, H. T. (2012). Generation of reactive oxygen species in bovine somatic cell nuclear transfer embryos during micromanipulation procedures. Reprod. Dev. Biol. 36, 49–53.
Hwang, I. S., Bae, H. K., and Cheong, H. T. (2013). Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos. J. Vet. Sci. 14, 235–240.
| Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 23820170PubMed |
Jafari, S., Hosseini, S. M., Hajian, M., Forouzanfar, M., Jafarpour, F., Abedi, P., Ostadhosseini, S., Abbasi, H., Gourabi, H., Shahverdi, A. H., Vosough, A. D., Anjomshoaa, M., Haron, A. W., Nordin, N., Yaakub, H., and Nasr-Esfahani, M. H. (2011). Epigenetic modification does not determine the time of POU5F1 transcription activation in cloned bovine embryos. J. Assist. Reprod. Genet. 28, 1119–1127.
| Epigenetic modification does not determine the time of POU5F1 transcription activation in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 22020531PubMed |
Jeong, Y. W., Park, S. W., Hossein, M. S., Kim, S., Kim, J. H., Lee, S. H., Kang, S. K., Lee, B. C., and Hwang, W. S. (2006). Anti-apoptotic and embryotrophic effects of α-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilisation and somatic cell nuclear transfer. Theriogenology 66, 2104–2112.
| Anti-apoptotic and embryotrophic effects of α-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilisation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsLnK&md5=7e1facc4eb88a7ce2063ff38cf42f50eCAS | 16876856PubMed |
Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Chung, A. S., Lee, K. K., and Han, Y. M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28, 173–177.
| Aberrant methylation of donor genome in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOrtb8%3D&md5=09cdee2e8f9fa687ad375b7569f48839CAS | 11381267PubMed |
Kitagawa, Y., Suzuki, K., Yoneda, A., and Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS) and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–1197.
| Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS) and DNA fragmentation in porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCqs7o%3D&md5=ff8ea666b6a313457ef8b4765cb9ffc2CAS | 15325546PubMed |
Krokan, H. E., Standal, R., and Slupphaug, G. (1997). DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16.
| 1:CAS:528:DyaK2sXksFCju7s%3D&md5=7a98b8566065268227bfa7b52dc860b9CAS | 9224623PubMed |
Luvoni, G. C., Keskintepe, L., and Brackett, B. G. (1996). Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol. Reprod. Dev. 43, 437–443.
| Improvement in bovine embryo production in vitro by glutathione-containing culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVGjs70%3D&md5=b0e955e0fc4bf0cea9a112163ba2f12dCAS | 9052934PubMed |
Nagai, S., Mabuchi, T., Hirata, S., Shoda, T., Kasai, T., Yokota, S., Shitara, H., Yonekawa, H., and Hoshi, K. (2006). Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J. Exp. Med. 210, 137–144.
| Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2rtbjN&md5=41a932bb2d9dca67cc060cbbe90b3745CAS | 17023767PubMed |
Nedambale, T. L., Du, F., Yang, X., and Tian, X. C. (2006). Higher survival rate of vitrified and thawed in vitro-produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol. Anim. Reprod. Sci. 93, 61–75.
| Higher survival rate of vitrified and thawed in vitro-produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsrk%3D&md5=6c280c3c0a3b0978ed37f30f30e24da2CAS | 16099115PubMed |
Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and fetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
| Epigenetic reprogramming in embryonic and fetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=5bb1390ab888b888c9aa7ca8169b805fCAS | 18239046PubMed |
Olson, S. E., and Seidel, G. E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 62, 248–252.
| Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOktA%3D%3D&md5=980f70bbfe23f4d5be0dc4640acd357dCAS | 10642559PubMed |
Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12, 913–922.
| Mitochondria, oxidative stress and cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFamtrw%3D&md5=4eefae3a557bb299a131f05b94619b9bCAS | 17453160PubMed |
Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., and Siedow, N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and inter-organellar signalling. Plant Physiol. 141, 357–366.
| Mitochondrial reactive oxygen species. Contribution to oxidative stress and inter-organellar signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksb0%3D&md5=41affdded0de1265be2b7740a05f3cf3CAS | 16760488PubMed |
Rosenkrans, C. F., and First, N. L. (1994). Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J. Anim. Sci. 72, 434–437.
| 1:CAS:528:DyaK2cXisVeitr4%3D&md5=cff95b70f9ed5bc0240c486232e9430dCAS | 8157527PubMed |
Takahashi, M., Nagai, T., Okamura, N., Takahashi, H., and Okano, A. (2002). Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol. Reprod. 66, 562–567.
| Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitL4%3D&md5=cb6447c586c920a83a185490f8011520CAS | 11870058PubMed |
Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., and Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 71, 1150–1157.
| Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7c%3D&md5=879376c97461a75d3806d5d340072067CAS | 15175235PubMed |
Thouas, G. A., Trounson, A. O., Wolvetang, E. J., and Jones, G. M. (2004). Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol. Reprod. 71, 1936–1942.
| Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsr3O&md5=000b57c7c615c5b0515263393018b839CAS | 15286028PubMed |
Tilly, J. L., and Tilly, K. I. (1995). Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 136, 242–252.
| 1:CAS:528:DyaK2MXjt1KntLs%3D&md5=37792b8f624633c905a75bb47472aaf7CAS | 7828537PubMed |
Yamanaka, K., Sakatani, M., Kubota, K., Balboula, A. Z., Sawai, K., and Takahashi, M. (2011). Effects of downregulating DNA methyltansferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. J. Reprod. Dev. 57, 393–402.
| Effects of downregulating DNA methyltansferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOiu70%3D&md5=f2dc043b53ee69d66616b5c571e5929bCAS | 21343670PubMed |