Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development

Young-Joo Yi A C D , Miriam Sutovsky A , Won-Hee Song A and Peter Sutovsky A B
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, University of Missouri, S141 ASRC, 920 East Campus Drive, Columbia, MO65211-5300, USA.

B Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, S141 ASRC, 920 East Campus Drive, Columbia, MO65211-5300, USA.

C Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan-si, Jeollabuk-do 570-752, Korea.

D Corresponding author. Email: yiyj@jbnu.ac.kr

Reproduction, Fertility and Development 27(8) 1154-1167 https://doi.org/10.1071/RD14012
Submitted: 14 January 2014  Accepted: 8 April 2014   Published: 22 May 2014

Abstract

Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.

Additional keywords: pig, ubiquitin, UCHL1, UCHL3.


References

Abeydeera, L. R., Wang, W. H., Prather, R. S., and Day, B. N. (1998). Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod. 58, 1316–1320.
Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCrtLc%3D&md5=d9961851db601df4f34b285afbfb668bCAS | 9603270PubMed |

Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147.
Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2mu7jO&md5=19908571bfd2983a4eb0bd99f354317aCAS | 22033522PubMed |

Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2012). Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 8, 421–423.
Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles.Crossref | GoogleScholarGoogle Scholar | 22361582PubMed |

Altun, M., Kramer, H. B., Willems, L. I., McDermott, J. L., Leach, C. A., Goldenberg, S. J., Kumar, K. G., Konietzny, R., Fischer, R., Kogan, E., Mackeen, M. M., McGouran, J., Khoronenkova, S. V., Parsons, J. L., Dianov, G. L., Nicholson, B., and Kessler, B. M. (2011). Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412.
Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqs7nP&md5=81b2b6698f589a3fb914ad27bef9edc9CAS | 22118674PubMed |

Bheda, A., Gullapalli, A., Caplow, M., Pagano, J. S., and Shackelford, J. (2010). Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis. Cell Cycle 9, 980–994.
Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ktb3P&md5=5122e6e69c1a7044fc60bc91cf9924ddCAS | 20160478PubMed |

Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614.
p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.Crossref | GoogleScholarGoogle Scholar | 16286508PubMed |

Chung, C. H., and Baek, S. H. (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem. Biophys. Res. Commun. 266, 633–640.
Deubiquitinating enzymes: their diversity and emerging roles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvF2qu7c%3D&md5=15aa5a13785e6c809957efbbac502e61CAS | 10603300PubMed |

D’Andrea, A., and Pellman, D. (1998). Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33, 337–352.
Deubiquitinating enzymes: a new class of biological regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFemsro%3D&md5=92ab72a0f25ab994055f2fcc653b6edeCAS | 9827704PubMed |

Day, I. N., and Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210, 157–160.
Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFCmu78%3D&md5=df3be39290ae510a389a05de6121688fCAS | 2947814PubMed |

Ellederova, Z., Halada, P., Man, P., Kubelka, M., Motlik, J., and Kovarova, H. (2004). Protein patterns of pig oocytes during in vitro maturation. Biol. Reprod. 71, 1533–1539.
Protein patterns of pig oocytes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yisLk%3D&md5=e3345227c3ce629e709a19d1043bfa29CAS | 15229143PubMed |

Gong, L., Kamitani, T., Millas, S., and Yeh, E. T. (2000). Identification of a novel isopeptidase with dual specificity for ubiquitin- and NEDD8-conjugated proteins. J. Biol. Chem. 275, 14 212–14 216.
Identification of a novel isopeptidase with dual specificity for ubiquitin- and NEDD8-conjugated proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Cgu7c%3D&md5=4a61e7fa8bbbd71a30fa51fcef6ed51aCAS |

Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., England, P., and Rodriguez, M. S. (2009). Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 10, 1250–1258.
Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqsbbE&md5=03e547868e7e0893cfac3c413cd93b85CAS | 19798103PubMed |

Huo, L. J., Fan, H. Y., Zhong, Z. S., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2004). Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 121, 1275–1287.
Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFyrtbs%3D&md5=5d79f9ad92bc5a57541306e9f1c7aa88CAS | 15327787PubMed |

Huo, L. J., Zhong, Z. S., Liang, C. G., Wang, Q., Yin, S., Ai, J. S., Yu, L. Z., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2006). Degradation of securin in mouse and pig oocytes is dependent on ubiquitin-proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition. Front. Biosci. 11, 2193–2202.
Degradation of securin in mouse and pig oocytes is dependent on ubiquitin-proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVahu7s%3D&md5=1c5c56598a7f0ee4f4565a9a7e49ca58CAS | 16720305PubMed |

Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296.
Selective autophagy mediated by autophagic adapter proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOhsr0%3D&md5=0fd9ca18813808f2f52885394da1c7a3CAS | 21189453PubMed |

Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998). Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.
Aggresomes: a cellular response to misfolded proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFCrtA%3D%3D&md5=b2e7faf79c456c539df6239037c7e7f9CAS | 9864362PubMed |

Josefsberg, L. B., Galiani, D., Dantes, A., Amsterdam, A., and Dekel, N. (2000). The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 62, 1270–1277.
The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htLw%3D&md5=5925f54edc7cca72c1d46a9653d365a6CAS | 10775176PubMed |

Kickhoefer, V. A., and Rome, L. H. (1994). The sequence of a cDNA encoding the major vault protein from Rattus norvegicus. Gene 151, 257–260.
The sequence of a cDNA encoding the major vault protein from Rattus norvegicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFShu7Y%3D&md5=1d61464367138dc14b6c01f1081f9751CAS | 7828886PubMed |

Kolli, S., Zito, C. I., Mossink, M. H., Wiemer, E. A., and Bennett, A. M. (2004). The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J. Biol. Chem. 279, 29 374–29 385.
The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVCmtLw%3D&md5=9a8504aa91857c85fc5ce80e1a1bc471CAS |

Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., and Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. Reproduction 143, 271–279.
Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOqsLw%3D&md5=80e975faff2bed7070ed561b548c77a4CAS | 22223688PubMed |

Kurihara, L. J., Semenova, E., Levorse, J. M., and Tilghman, S. M. (2000). Expression and functional analysis of Uch-L3 during mouse development. Mol. Cell. Biol. 20, 2498–2504.
Expression and functional analysis of Uch-L3 during mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFegurc%3D&md5=156e9cb1c6d858b41eb56871120c751bCAS | 10713173PubMed |

Kurz, T., Pintard, L., Willis, J. H., Hamill, D. R., Gonczy, P., Peter, M., and Bowerman, B. (2002). Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294–1298.
Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVGhsLs%3D&md5=91046423944774f9fe392867fa893f70CAS | 11847342PubMed |

Kwon, J., Kikuchi, T., Setsuie, R., Ishii, Y., Kyuwa, S., and Yoshikawa, Y. (2003). Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp. Anim. 52, 1–9.
Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFSqtbc%3D&md5=84cf7b6296ce593bd1ddaaf3529b29b9CAS | 12638230PubMed |

Kwon, J., Wang, Y. L., Setsuie, R., Sekiguchi, S., Sakurai, M., Sato, Y., Lee, W. W., Ishii, Y., Kyuwa, S., Noda, M., Wada, K., and Yoshikawa, Y. (2004). Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol. Reprod. 71, 515–521.
Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtbg%3D&md5=af68a67e7161865423a6303e3965af6aCAS | 15084487PubMed |

Li, L., Baibakov, B., and Dean, J. (2008). A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425.
A subcortical maternal complex essential for preimplantation mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOit7vL&md5=03a16db44d7fb0f91d5f2a023d6d1308CAS | 18804437PubMed |

Liu, Y., Lashuel, H. A., Choi, S., Xing, X., Case, A., Ni, J., Yeh, L. A., Cuny, G. D., Stein, R. L., and Lansbury, P. T. (2003). Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837–846.
Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSqs7k%3D&md5=be5615f657b56d05ad7fbca81d6eb85fCAS | 14522054PubMed |

Mtango, N. R., and Latham, K. E. (2007). Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol. Genomics 31, 1–14.
Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2rtrfK&md5=98827d798a23cec5084d254a2c51ac77CAS | 17550997PubMed |

Mtango, N. R., Sutovsky, M., Susor, A., Zhong, Z., Latham, K. E., and Sutovsky, P. (2012a). Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J. Cell. Physiol. 227, 1592–1603.
Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGhsQ%3D%3D&md5=5ae06d2b0e889964dfffe98f97f808d4CAS | 21678411PubMed |

Mtango, N. R., Sutovsky, M., Vandevoort, C. A., Latham, K. E., and Sutovsky, P. (2012b). Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J. Cell. Physiol. 227, 2022–2029.
Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2jsr0%3D&md5=0294c465318a1eef2832e31b12e157c1CAS | 21751213PubMed |

Novak, S., Paradis, F., Savard, C., Tremblay, K., and Sirard, M. A. (2004). Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation. Biol. Reprod. 71, 1279–1289.
Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtbo%3D&md5=1b8ac624f90588686b0af02525075fa3CAS | 15201196PubMed |

Ohsugi, M., Zheng, P., Baibakov, B., Li, L., and Dean, J. (2008). Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135, 259–269.
Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVShtLg%3D&md5=236174d3d16186ef76935251e9ba73a2CAS | 18057100PubMed |

Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24 131–24 145.
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslOntb0%3D&md5=213a07932b584387c76d3b58a2d645eaCAS |

Sato, M., and Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144.
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2mu7jN&md5=103ce642b230c40581f472a5ecb2d5f4CAS | 21998252PubMed |

Scheffer, G. L., Schroeijers, A. B., Izquierdo, M. A., Wiemer, E. A., and Scheper, R. J. (2000). Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr. Opin. Oncol. 12, 550–556.
Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1ygtL4%3D&md5=219c5f2380e73e67e30bd6ea74dc22a4CAS | 11085454PubMed |

Seiberlich, V., Goldbaum, O., Zhukareva, V., and Richter-Landsberg, C. (2012). The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases. Biochim. Biophys. Acta 1823, 2057–2068.
The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlyltb4%3D&md5=c0f8a97e6cc6aab348b6ddce58454ddcCAS | 22565157PubMed |

Sekiguchi, S., Kwon, J., Yoshida, E., Hamasaki, H., Ichinose, S., Hideshima, M., Kuraoka, M., Takahashi, A., Ishii, Y., Kyuwa, S., Wada, K., and Yoshikawa, Y. (2006). Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am. J. Pathol. 169, 1722–1729.
Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12isrzK&md5=aae206c9ce9709dc13a5f99ebcdfd02fCAS | 17071595PubMed |

Sims, J. J., Scavone, F., Cooper, E. M., Kane, L. A., Youle, R. J., Boeke, J. D., and Cohen, R. E. (2012). Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat. Methods 9, 303–309.
Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGktLk%3D&md5=02cba64cb5353b3899ec7428a8f56896CAS | 22306808PubMed |

Sun, Z. G., Kong, W. H., Zhang, Y. J., Yan, S., Lu, J. N., Gu, Z., Lin, F., and Tso, J. K. (2002). A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation. Cell Res. 12, 199–206.
A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 12296378PubMed |

Susor, A., Ellederova, Z., Jelinkova, L., Halada, P., Kavan, D., Kubelka, M., and Kovarova, H. (2007). Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction 134, 559–568.
Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Knur3K&md5=ceb04434356c231677201b6316852ac5CAS | 17890291PubMed |

Susor, A., Liskova, L., Toralova, T., Pavlok, A., Pivonkova, K., Karabinova, P., Lopatarova, M., Sutovsky, P., and Kubelka, M. (2010). Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes. Biol. Reprod. 82, 1151–1161.
Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgt7Y%3D&md5=26a5c0b07e22ef2db999bde9bc9b1f59CAS | 20164442PubMed |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.
Ubiquitin tag for sperm mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyktrs%3D&md5=ed8f17babde99f1e8aea5b2fda07af4bCAS | 10586873PubMed |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltl2gurw%3D&md5=843256262accd58196a3d1adf99bd838CAS | 10906068PubMed |

Sutovsky, P., McCauley, T. C., Sutovsky, M., and Day, B. N. (2003). Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 68, 1793–1800.
Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltL0%3D&md5=53febedd1c983e7adbe6b98a559edb2eCAS | 12606393PubMed |

Sutovsky, P., Manandhar, G., Laurincik, J., Letko, J., Caamaño, J. N., Day, B. N., Lai, L., Prather, R. S., Sharpe-Timms, L. L., Zimmer, R., and Sutovsky, M. (2005). Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction 129, 269–282.
Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntL4%3D&md5=714e4a8a5493a765461297f6d852b4b5CAS | 15749954PubMed |

Takebayashi, Y., Nakayama, K., Fujioka, T., Kanzaki, A., Mutho, M., Uchida, T., Miyazaki, K., Ito, M., and Fukumoto, M. (2001). Expression of multidrug resistance associated transporters (MDR1, MRP1, LRP and BCRP) in porcine oocyte. Int. J. Mol. Med. 7, 397–400.
| 1:CAS:528:DC%2BD3MXislCkurs%3D&md5=72c4d5294aedb743d9a695dcd3d10dddCAS | 11254880PubMed |

Tian, X., Isamiddinova, N. S., Peroutka, R. J., Goldenberg, S. J., Mattern, M. R., Nicholson, B., and Leach, C. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev. Technol. 9, 165–173.
Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVOnt7w%3D&md5=0e45fa8187b2ae0065c8e5c978593697CAS | 21133675PubMed |

Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Mater, a maternal effect gene required for early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWhs7c%3D&md5=7851038fd7ab5cf47c5b061d5199a929CAS | 11062459PubMed |

van Wijk, S. J., Fiskin, E., Putyrski, M., Pampaloni, F., Hou, J., Wild, P., Kensche, T., Grecco, H. E., Bastiaens, P., and Dikic, I. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47, 797–809.
Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqt7nI&md5=dadea938fc242cdd4092e2b1cb36c415CAS | 22819327PubMed |

Wada, H., Kito, K., Caskey, L. S., Yeh, E. T., and Kamitani, T. (1998). Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem. Biophys. Res. Commun. 251, 688–692.
Cleavage of the C-terminus of NEDD8 by UCH-L3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlais70%3D&md5=7cb52a67e2002d719d2d057bebda822fCAS | 9790970PubMed |

Wilkinson, K. D. (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256.
| 1:CAS:528:DyaK2sXnvVKksr0%3D&md5=afdb8faedd0f0013c093bc157f3d30a4CAS | 9409543PubMed |

Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148.
Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFKrt7k%3D&md5=648ac957ad14e189a82f6e6c82d326c4CAS | 10906270PubMed |

Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M., and Pohl, J. (1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673.
The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlWrs70%3D&md5=1f031faa0e3f71d31dd0a0957f7c1e3aCAS | 2530630PubMed |

Wilkinson, K. D., Deshpande, S., and Larsen, C. N. (1992). Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem. Soc. Trans. 20, 631–637.
| 1:CAS:528:DyaK38Xkt1aiu7o%3D&md5=38390503233651bbf23dce35588503adCAS | 1426603PubMed |

Wójcik, C. (2002). Regulation of apoptosis by the ubiquitin and proteasome pathway. J. Cell. Mol. Med. 6, 25–48.
Regulation of apoptosis by the ubiquitin and proteasome pathway.Crossref | GoogleScholarGoogle Scholar | 12003667PubMed |

Wójcik, C., Schroeter, D., Wilk, S., Lamprecht, J., and Paweletz, N. (1996). Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318.
| 8929570PubMed |

Yi, Y. J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C. S., Prather, R. S., and Sutovsky, P. (2007). Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780–793.
Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CnurfI&md5=b9face8ee5723f5b7a53da7c4cdc0739CAS | 17671268PubMed |

Yi, Y. J., Nagyova, E., Manandhar, G., Prochazka, R., Sutovsky, M., Park, C. S., and Sutovsky, P. (2008). Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus–oocyte complexes matured in vitro. Biol. Reprod. 78, 115–126.
Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus–oocyte complexes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslw%3D&md5=e3a9394d608af327f6aab76c058ff530CAS | 17942798PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=62cc057dabae319dcd3d5d413bf001b2CAS | 11751272PubMed |

Zhang, N., Wilkinson, K., and Bownes, M. (1993). Cloning and analysis of expression of a ubiquitin carboxyl terminal hydrolase expressed during oogenesis in Drosophila melanogaster. Dev. Biol. 157, 214–223.
Cloning and analysis of expression of a ubiquitin carboxyl terminal hydrolase expressed during oogenesis in Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvF2qur8%3D&md5=4a459f4f596a34774a89b679488a34b0CAS | 7683284PubMed |