Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Relationship between adiponectin and fertility in the female pig

Danila B. Campos A C , Marcelo Albornoz B , Paula C. Papa C , Marie-France Palin D , Vilceu Bordignon B and Bruce D. Murphy A E
+ Author Affiliations
- Author Affiliations

A Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, CP 5000, St-Hyacinthe, Québec J2S 7C6, Canada.

B Department of Animal Science, McGill University, St-Anne de-Bellevue, Québec H9X 3V9, Canada.

C Departamento de Cirurgia, Setor de Anatomia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo – SP, 05508-270, Brasil.

D Dairy and Swine Research and Development Center, Agriculture and Agri-Food Canada, Lennoxville, Québec, J1M 1Z3, Canada.

E Corresponding author. Email: bruce.d.murphy@umontreal.ca

Reproduction, Fertility and Development 27(3) 458-470 https://doi.org/10.1071/RD13201
Submitted: 26 June 2013  Accepted: 26 November 2013   Published: 13 January 2014

Abstract

Adiponectin isoforms may mediate different aspects of the pleiotropic function of the protein, including the reproductive process. We examined the pattern of circulating adiponectin and adiponectin system expression in fat and ovarian tissues of hyperfertile and subfertile sows. We demonstrated the presence of five different isoforms of adiponectin (90, 158, 180, 250 and >250 kDa) in the circulation and identified a subgroup of subfertile females that displayed reduced abundance of all adiponectin isoforms as well as a lack of the 250-kDa adiponectin isoform in both serum and follicular fluid. Subfertility in these animals was associated with fewer large follicles and corpora lutea in the ovaries, as well as lower concentrations of 17β-oestradiol in the follicular fluid of large follicles. In addition, subfertile females showed higher adiponectin mRNA in fat tissue and altered mRNA and protein expression of adiponectin and its receptors in the ovary. Changes in the abundance and pattern of circulating adiponectin isoforms have been associated with reproductive disorders in animals and humans, including polycystic ovarian syndrome (PCOS). Our findings suggest that the adiponectin system may play an important role in controlling ovarian function and influencing porcine fertility.

Additional keywords: adiponectin isoforms, adiponectin receptors, ovary.


References

Amengual-Cladera, E., Llado, I., Gianotti, M., and Proenza, A. M. (2012). Retroperitoneal white adipose tissue mitochondrial function and adiponectin expression in response to ovariectomy and 17beta-estradiol replacement. Steroids 77, 659–665.
Retroperitoneal white adipose tissue mitochondrial function and adiponectin expression in response to ovariectomy and 17beta-estradiol replacement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1GmsLo%3D&md5=35a40a47ed40b3cab56f4f7deee8b914CAS |

Araki, S., Dobashi, K., Kubo, K., Asayama, K., and Shirahata, A. (2006). High molecular weight, rather than total, adiponectin levels better reflect metabolic abnormalities associated with childhood obesity. J. Clin. Endocrinol. Metab. 91, 5113–5116.
High molecular weight, rather than total, adiponectin levels better reflect metabolic abnormalities associated with childhood obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGru7jP&md5=89bb0b34a544fddeba45030c52505680CAS |

Ardawi, M. S., and Rouzi, A. A. (2005). Plasma adiponectin and insulin resistance in women with polycystic ovary syndrome. Fertil. Steril. 83, 1708–1716.
Plasma adiponectin and insulin resistance in women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Wksro%3D&md5=11347b5cafba642120c1968e2ba0ef24CAS |

Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Ohmoto, Y., Funahashi, T., and Matsuzawa, Y. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvF2is7w%3D&md5=16f3abf77ad346e1a4cc324381082a1fCAS |

Bélanger, B., Couture, J., Caron, S., Bodou, P., Fiet, J., and Bélanger, A. (1990). Production and secretion of C-19 steroids by rat and guinea pig adrenals. Steroids 55, 360–365.
Production and secretion of C-19 steroids by rat and guinea pig adrenals.Crossref | GoogleScholarGoogle Scholar |

Brochu-Gaudreau, K., Rehfeldt, C., Blouin, R., Bordignon, V., Murphy, B. D., and Palin, M. F. (2010). Adiponectin action from head to toe. Endocrine 37, 11–32.
Adiponectin action from head to toe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFGltg%3D%3D&md5=982b35ba70e820a51612aefb22d18d35CAS |

Campos, D. B., Palin, M. F., Bordignon, V., and Murphy, B. D. (2008). The ‘beneficial’ adipokines in reproduction and fertility. Int. J. Obes. 32, 223–231.
The ‘beneficial’ adipokines in reproduction and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVKltr4%3D&md5=07e7e49384823b297ddf0fd86f5d5521CAS |

Carmina, E., Orio, F., Palomba, S., Cascella, T., Longo, R. A., Colao, A. M., Lombardi, G., and Lobo, R. A. (2005). Evidence for altered adipocyte function in polycystic ovary syndrome. Eur. J. Endocrinol. 152, 389–394.
Evidence for altered adipocyte function in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVClu7k%3D&md5=a608c8b2ace345250c5eeeb64fae08f0CAS |

Catalano, P. M., Hoegh, M., Minium, J., Huston-Presley, L., Bernard, S., Kalhan, S., and Hauguel-De Mouzon, S. (2006). Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. Diabetologia 49, 1677–1685.
Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1OjurY%3D&md5=2aa85abb8cdc041d5eb58e78ec889166CAS |

Chabrolle, C., Tosca, L., Crochet, S., Tesseraud, S., and Dupont, J. (2007a). Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest. Anim. Endocrinol. 33, 480–487.
Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFenu7rJ&md5=2da3c55796750c62f4d7e798b41695a1CAS |

Chabrolle, C., Tosca, L., and Dupont, J. (2007b). Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction 133, 719–731.
Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku7o%3D&md5=22d2c405f593838168272fffb1d1a0cdCAS |

Chabrolle, C., Tosca, L., Rame, C., Lecomte, P., Royere, D., and Dupont, J. (2009). Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996.
Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGisLs%3D&md5=1876fa3438fa523b51e6d18ae8f9877cCAS |

Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M. F., Murphy, B. D., and Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domest. Anim. Endocrinol. 35, 198–207.
Adiponectin enhances in vitro development of swine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslWlsLc%3D&md5=1e09d83639c287971116f14d578dce77CAS |

Combs, T. P., Pajvani, U. B., Berg, A. H., Lin, Y., Jelicks, L. A., Laplante, M., Nawrocki, A. R., Rajala, M. W., Parlow, A. F., Cheeseboro, L., Ding, Y. Y., Russell, R. G., Lindemann, D., Hartley, A., Baker, G. R., Obici, S., Deshaies, Y., Ludgate, M., Rossetti, L., and Scherer, P. E. (2004). A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145, 367–383.
A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgt7fE&md5=552addd39df86efed15be44102c617b6CAS |

Douglas, D. A., Song, J. H., Moreau, G. M., and Murphy, B. D. (1998). Differentiation of the corpus luteum of the mink (Mustela vison): mitogenic and steroidogenic potential of luteal cells from embryonic diapause and postimplantation gestation. Biol. Reprod. 58, 1163–1169.
Differentiation of the corpus luteum of the mink (Mustela vison): mitogenic and steroidogenic potential of luteal cells from embryonic diapause and postimplantation gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCmtLw%3D&md5=13bd21a250fc77d45bdbaadada6c6710CAS |

Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbL&md5=c3e96887d84d2239d6f3aa6257f0c871CAS |

Fisher, F. M., Trujillo, M. E., Hanif, W., Barnett, A. H., McTernan, P. G., Scherer, P. E., and Kumar, S. (2005). Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia 48, 1084–1087.
Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1KmtLc%3D&md5=5ad067fd439839ba3570f2cc992e3932CAS |

Frommer, K. W., Schaffler, A., Buchler, C., Steinmeyer, J., Rickert, M., Rehart, S., Brentano, F., Gay, S., Muller-Ladner, U., and Neumann, E. (2012). Adiponectin isoforms: a potential therapeutic target in rheumatoid arthritis? Ann. Rheum. Dis. 71, 1724–1732.
Adiponectin isoforms: a potential therapeutic target in rheumatoid arthritis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Squr3J&md5=7d5e4ff733e45e0ace4dec7e48172ecdCAS |

Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010.
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWit78%3D&md5=4ea57822412aa0e0d942979fe16d7b1dCAS |

Gebken, J., Feydt, A., Brinckmann, J., Notbohm, H., Muller, P. K., and Batge, B. (1999). Ligand-induced downregulation of receptors for TGF-beta in human osteoblast-like cells from adult donors. J. Endocrinol. 161, 503–510.
Ligand-induced downregulation of receptors for TGF-beta in human osteoblast-like cells from adult donors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVGlurw%3D&md5=5ae0085d63a3bfc45f329ed6f663143aCAS |

Haap, M., Machicao, F., Stefan, N., Thamer, C., Tschritter, O., Schnuck, F., Wallwiener, D., Stumvoll, M., Haring, H. U., and Fritsche, A. (2005). Genetic determinants of insulin action in polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 113, 275–281.
Genetic determinants of insulin action in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFaitb4%3D&md5=93d5d5ae4fcdfd7dd21f89e929acb651CAS |

Hada, Y., Yamauchi, T., Waki, H., Tsuchida, A., Hara, K., Yago, H., Miyazaki, O., Ebinuma, H., and Kadowaki, T. (2007). Selective purification and characterization of adiponectin multimer species from human plasma. Biochem. Biophys. Res. Commun. 356, 487–493.
Selective purification and characterization of adiponectin multimer species from human plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGit74%3D&md5=f9f01285408adc1670a7e6300515e52eCAS |

Heinonen, S., Korhonen, S., Helisalmi, S., Koivunen, R., Tapanainen, J., Hippelainen, M., and Laakso, M. (2005). Associations between two single nucleotide polymorphisms in the adiponectin gene and polycystic ovary syndrome. Gynecol. Endocrinol. 21, 165–169.
Associations between two single nucleotide polymorphisms in the adiponectin gene and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyrt77M&md5=0e74b457dea64f9e4b7db45d34329997CAS |

Honnma, H., Endo, T., Kiya, T., Shimizu, A., Nagasawa, K., Baba, T., Fujimoto, T., Henmi, H., Kitajima, Y., Manase, K., Ishioka, S., Ito, E., and Saito, T. (2010). Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa) rats. Reprod. Biol. Endocrinol. 8, 73.
Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa) rats.Crossref | GoogleScholarGoogle Scholar |

Hosch, S. E., Olefsky, J. M., and Kim, J. J. (2006). APPLied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab. 4, 5–6.
APPLied mechanics: uncovering how adiponectin modulates insulin action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFyiu70%3D&md5=dee1839b6b768ba75f81792737e0387dCAS |

Houde, A. A., Murphy, B. D., Mathieu, O., Bordignon, V., and Palin, M. F. (2008). Characterization of swine adiponectin and adiponectin receptor polymorphisms and their association with reproductive traits. Anim. Genet. 39, 249–257.
Characterization of swine adiponectin and adiponectin receptor polymorphisms and their association with reproductive traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGrurw%3D&md5=1c172f19b72c5150a97fb94ed6329076CAS |

Itoh, N., Patel, U., Cupp, A. S., and Skinner, M. K. (1998). Developmental and hormonal regulation of transforming growth factor-beta1 (TGFbeta1), -2, and -3 gene expression in isolated prostatic epithelial and stromal cells: epidermal growth factor and TGFbeta interactions. Endocrinology 139, 1378–1388.
Developmental and hormonal regulation of transforming growth factor-beta1 (TGFbeta1), -2, and -3 gene expression in isolated prostatic epithelial and stromal cells: epidermal growth factor and TGFbeta interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtleju70%3D&md5=97a740427dfb42f0ceb75769763156a2CAS |

Kadowaki, T., and Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451.
Adiponectin and adiponectin receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWru7c%3D&md5=1b0cdfb2709744b95f067399352dd8eeCAS |

Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792.
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvV2ltL0%3D&md5=f612144c4805e874dc3ac4cdc36f1e4fCAS |

Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N., and Ranganathan, G. (2003). Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785.
Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlWhtbk%3D&md5=b3df7d1e4a81f50f365e3317da527526CAS |

Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., and Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol. Cell. Endocrinol. 284, 38–45.
Role of adiponectin in regulating ovarian theca and granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislSlt7Y%3D&md5=590aa9946b3b5f62fb208001d24a1aaaCAS |

Lara-Castro, C., Luo, N., Wallace, P., Klein, R. L., and Garvey, W. T. (2006). Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes 55, 249–259.
Adiponectin multimeric complexes and the metabolic syndrome trait cluster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVSrsg%3D%3D&md5=cbf68ef0d52d70c1883396c6e2cfde7eCAS |

Ledoux, S., Campos, D. B., Lopes, F. L., Dobias-Goff, M., Palin, M. F., and Murphy, B. D. (2006). Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147, 5178–5186.
Adiponectin induces periovulatory changes in ovarian follicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgsL3E&md5=99766d83d652f60ea950775e72b4549aCAS |

Lord, E., Ledoux, S., Murphy, B. D., Beaudry, D., and Palin, M. F. (2005). Expression of adiponectin and its receptors in swine. J. Anim. Sci. 83, 565–578.
| 1:CAS:528:DC%2BD2MXitVSltbg%3D&md5=44a2db82f2401d1d505984a19fba23feCAS |

Ma, K., Cabrero, A., Saha, P. K., Kojima, H., Li, L., Chang, B. H., Paul, A., and Chan, L. (2002). Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J. Biol. Chem. 277, 34 658–34 661.
Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1WitL8%3D&md5=28bf48d4b8d07584be5461e043d43858CAS |

Magkos, F., and Sidossis, L. S. (2007). Recent advances in the measurement of adiponectin isoform distribution. Curr. Opin. Clin. Nutr. Metab. Care 10, 571–575.
Recent advances in the measurement of adiponectin isoform distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWitbfO&md5=3a889ab22272d97460ce71b2472f65e6CAS |

Maillard, V., Uzbekova, S., Guignot, F., Perreau, C., Rame, C., Coyral-Castel, S., and Dupont, J. (2010). Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development. Reprod. Biol. Endocrinol. 8, 23.
Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar |

Mao, X., Kikani, C. K., Riojas, R. A., Langlais, P., Wang, L., Ramos, F. J., Fang, Q., Christ-Roberts, C. Y., Hong, J. Y., Kim, R. Y., Liu, F., and Dong, L. Q. (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516–523.
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGnurY%3D&md5=77cbc482aa398dcb184c66b0ad094469CAS |

Martini, L., Waldhoer, M., Pusch, M., Kharazia, V., Fong, J., Lee, J. H., Freissmuth, C., and Whistler, J. L. (2007). Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J. 21, 802–811.
Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1eitrs%3D&md5=f30ad792ef99fae44b3a201f10c3f05aCAS |

Mazaki-Tovi, S., Romero, R., Vaisbuch, E., Kusanovic, J. P., Erez, O., Gotsch, F., Chaiworapongsa, T., Than, N. G., Kim, S. K., Nhan-Chang, C. L., Jodicke, C., Pacora, P., Yeo, L., Dong, Z., Yoon, B. H., Hassan, S. S., and Mittal, P. (2009). Maternal serum adiponectin multimers in preeclampsia. J. Perinat. Med. 37, 349–363.
| 1:CAS:528:DC%2BD1MXovFehsLg%3D&md5=f734dac1085ce72e4093b01a790db6f5CAS |

Mitchell, M., Armstrong, D. T., Robker, R. L., and Norman, R. J. (2005). Adipokines: implications for female fertility and obesity. Reproduction 130, 583–597.
Adipokines: implications for female fertility and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLvL&md5=5b8ced1d1fe44e6c99f5dcba6dfb6341CAS |

Oh, D. K., Ciaraldi, T., and Henry, R. R. (2007). Adiponectin in health and disease. Diabetes Obes. Metab. 9, 282–289.
Adiponectin in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVSlu7Y%3D&md5=489bc71fdc380db8d3ff87b6a33f60c1CAS |

Pajvani, U. B., Du, X., Combs, T. P., Berg, A. H., Rajala, M. W., Schulthess, T., Engel, J., Brownlee, M., and Scherer, P. E. (2003). Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085.
Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVyqu7g%3D&md5=0dca9a49ba4975efaf34d529b5f66027CAS |

Pajvani, U. B., Hawkins, M., Combs, T. P., Rajala, M. W., Doebber, T., Berger, J. P., Wagner, J. A., Wu, M., Knopps, A., Xiang, A. H., Utzschneider, K. M., Kahn, S. E., Olefsky, J. M., Buchanan, T. A., and Scherer, P. E. (2004). Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12 152–12 162.
Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitl2hu74%3D&md5=f25a256423bc178b64a9eb1fc97f981bCAS |

Peake, P. W., Kriketos, A. D., Campbell, L. V., Shen, Y., and Charlesworth, J. A. (2005). The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur. J. Endocrinol. 153, 409–417.
The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsrjK&md5=14f530389d4a153cb78d4470b12d57f2CAS |

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=a85f664bc260399bf368abd364128362CAS |

Retnakaran, R., Connelly, P. W., Maguire, G., Sermer, M., Zinman, B., and Hanley, A. J. (2007). Decreased high-molecular-weight adiponectin in gestational diabetes: implications for the pathophysiology of type 2 diabetes. Diabet. Med. 24, 245–252.
Decreased high-molecular-weight adiponectin in gestational diabetes: implications for the pathophysiology of type 2 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFWlsL0%3D&md5=07d25b18bd7ed10f19e3094d5299cdc5CAS |

Richards, A. A., Stephens, T., Charlton, H. K., Jones, A., Macdonald, G. A., Prins, J. B., and Whitehead, J. P. (2006). Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20, 1673–1687.
Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Gjtr8%3D&md5=459ec3482b39327f355ccc712821af12CAS |

Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., Kuo, F. T., Pisarska, M. D., and Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479 e471.
Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOhs7w%3D&md5=2be85f2b3a1537ee4ff2d29a29048658CAS |

Sartor, B. M., and Dickey, R. P. (2005). Polycystic ovarian syndrome and the metabolic syndrome. Am. J. Med. Sci. 330, 336–342.
Polycystic ovarian syndrome and the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar |

Sirois, J., and Dore, M. (1997). The late induction of prostaglandin G/H synthase-2 in equine preovulatory follicles supports its role as a determinant of the ovulatory process. Endocrinology 138, 4427–4434.
The late induction of prostaglandin G/H synthase-2 in equine preovulatory follicles supports its role as a determinant of the ovulatory process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVajt7o%3D&md5=57970091566b4dd7f41f70f5d3e9c46bCAS |

Tabandeh, M. R., Hosseini, A., Saeb, M., Kafi, M., and Saeb, S. (2010). Changes in the gene expression of adiponectin and adiponectin receptors (AdipoR1 and AdipoR2) in ovarian follicular cells of dairy cow at different stages of development. Theriogenology 73, 659–669.
Changes in the gene expression of adiponectin and adiponectin receptors (AdipoR1 and AdipoR2) in ovarian follicular cells of dairy cow at different stages of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsr4%3D&md5=8f3445cdc7e87f54a269ca026e93b1e8CAS |

Tan, B. K., Chen, J., Digby, J. E., Keay, S. D., Kennedy, C. R., and Randeva, H. S. (2006). Upregulation of adiponectin receptor 1 and 2 mRNA and protein in adipose tissue and adipocytes in insulin-resistant women with polycystic ovary syndrome. Diabetologia 49, 2723–2728.
Upregulation of adiponectin receptor 1 and 2 mRNA and protein in adipose tissue and adipocytes in insulin-resistant women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOqsrjM&md5=c815e3821600fec629b4682c96b5e35bCAS |

Tang, Y. T., Hu, T., Arterburn, M., Boyle, B., Bright, J. M., Emtage, P. C., and Funk, W. D. (2005). PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol. 61, 372–380.
PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVamtr%2FE&md5=053c0194601d5b085673b4570f48e01cCAS |

Toulis, K. A., Goulis, D. G., Farmakiotis, D., Georgopoulos, N. A., Katsikis, I., Tarlatzis, B. C., Papadimas, I., and Panidis, D. (2009). Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum. Reprod. Update 15, 297–307.
Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSqtbg%3D&md5=be9120fcc32828a12b019eee40cfa2d5CAS |

Tsao, T. S., Tomas, E., Murrey, H. E., Hug, C., Lee, D. H., Ruderman, N. B., Heuser, J. E., and Lodish, H. F. (2003). Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem. 278, 50 810–50 817.
Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslWjsrw%3D&md5=08bbe157cbb5b54dd2210d2851cac275CAS |

Turer, A. T., and Scherer, P. E. (2012). Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319–2326.
Adiponectin: mechanistic insights and clinical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKisr7E&md5=6eb06783edc9c2936b3f2e0db825cc86CAS |

Tworoger, S. S., Mantzoros, C., and Hankinson, S. E. (2007). Relationship of plasma adiponectin with sex hormone and insulin-like growth factor levels. Obesity 15, 2217–2224.
Relationship of plasma adiponectin with sex hormone and insulin-like growth factor levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1elsrbJ&md5=e4cb92467906357415e85c90e6e87da5CAS |

Wang, Y., Xu, A., Knight, C., Xu, L. Y., and Cooper, G. J. (2002). Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J. Biol. Chem. 277, 19 521–19 529.
Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVWlu78%3D&md5=644a498add3d396e44000bd76161e2fdCAS |

Wang, Y., Lam, K. S., Yau, M. H., and Xu, A. (2008). Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 409, 623–633.
Post-translational modifications of adiponectin: mechanisms and functional implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kitg%3D%3D&md5=c8fc0d096481eb9064d4c165ab8ee615CAS |

Whitehead, J. P., Richards, A. A., Hickman, I. J., Macdonald, G. A., and Prins, J. B. (2006). Adiponectin: a key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 8, 264–280.
Adiponectin: a key adipokine in the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVajuro%3D&md5=c8543c677b99aecbbd18c19986df6d7cCAS |

Woo, J. G., Dolan, L. M., Deka, R., Kaushal, R. D., Shen, Y., Pal, P., Daniels, S. R., and Martin, L. J. (2006). Interactions between noncontiguous haplotypes in the adiponectin gene ACDC are associated with plasma adiponectin. Diabetes 55, 523–529.
Interactions between noncontiguous haplotypes in the adiponectin gene ACDC are associated with plasma adiponectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFajsb8%3D&md5=2daf8365ba5fa66bda6221fe89d440e4CAS |

Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., Okada-Iwabu, M., Kawamoto, S., Kubota, N., Kubota, T., Ito, Y., Kamon, J., Tsuchida, A., Kumagai, K., Kozono, H., Hada, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Awazawa, M., Takamoto, I., Froguel, P., Hara, K., Tobe, K., Nagai, R., Ueki, K., and Kadowaki, T. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339.
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKku7g%3D&md5=04ab14ff49ed129666b78967c1f454e1CAS |