Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Development of interspecies testicular germ-cell transplantation in flatfish

Tiziana Pacchiarini A , Carmen Sarasquete A and Elsa Cabrita A B
+ Author Affiliations
- Author Affiliations

A Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain.

B Corresponding author. Email: elsa.cabrita@icman.csic.es

Reproduction, Fertility and Development 26(5) 690-702 https://doi.org/10.1071/RD13103
Submitted: 5 February 2013  Accepted: 22 April 2013   Published: 5 June 2013

Abstract

Interspecific testicular germ cell (TGC) transplantation was investigated in two commercial flatfish species. Testes from donor species (Senegalese sole) were evaluated using classical histological techniques (haematoxylin–eosin staining and haematoxylin–light green–orange G–acid fuchsine staining), in situ hybridisation and immunohistochemical analysis. Both Ssvasa1–2 mRNAs and SsVasa protein allowed the characterisation of TGCs, confirming the usefulness of the vasa gene in the detection of Senegalese sole TGCs. Xenogenic transplants were carried out using TGCs from one-year-old Senegalese sole into turbot larvae. Propidium iodide–SYBR-14 and 4′,6′-diamidino-2-phenylindole (DAPI) staining showed that 87.98% of the extracted testicular cells were viable for microinjection and that 15.63% of the total recovered cells were spermatogonia. The vasa gene was characterised in turbot recipients using cDNA cloning. Smvasa mRNA was confirmed as a germ cell-specific molecular marker in this species. Smvasa expression analysis during turbot ontogeny was carried out before Senegalese sole TGC transplants into turbot larvae. Turbot larvae at 18 days after hatching (DAH) proved to be susceptible to manipulation procedures. High survival rates (83.75 ± 15.90 – 100%) were obtained for turbot larvae at 27, 34 and 42 DAH. These data highlight the huge potential of this species for transplantation studies. Quantitative PCR was employed to detect Senegalese sole vasa mRNAs (Ssvasa1–2) in the recipient turbot larvae. The Ssvasa mRNAs showed a significant increase in relative expression in 42-DAH microinjected larvae three weeks after treatment, showing the proliferation of Senegalese sole spermatogonia in transplanted turbot larvae.

Additional keywords: microinjection, Senegalese sole, spermatogonia, turbot, vasa, xenotransplantation.


References

Ando, N., Miura, T., Nader, M. R., Miura, C., and Yamauchi, K. (2000). A method for estimating the number of mitotic divisions in fish testis. Fish. Sci. 66, 299–303.
A method for estimating the number of mitotic divisions in fish testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsl2nsr4%3D&md5=75907446d4396f02b23d7b6bc29ca179CAS |

Blázquez, M., González, A., Mylonas, C. C., and Piferrer, F. (2011). Cloning and sequence analysis of a vasa homolog in the European sea bass (Dicentrarchus labrax): Tissue distribution and mRNA expression levels during early development and sex differentiation. Gen. Comp. Endocrinol. 170, 322–333.
| 20955711PubMed |

Cabrita, E., Soares, F., and Dinis, M. T. (2006). Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality. Aquaculture 261, 967–975.
Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality.Crossref | GoogleScholarGoogle Scholar |

Cabrita, E., Soares, F., Beirão, J., García-López, A., Martínez-Rodríguez, G., and Dinis, M. T. (2011). Endocrine and milt response of Senegalese sole, Solea senegalensis, males maintained in captivity. Theriogenology 75, 1–9.
Endocrine and milt response of Senegalese sole, Solea senegalensis, males maintained in captivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantr3L&md5=e6f52b5e1336cda47a59d4437d81f17bCAS | 20833416PubMed |

Fujiwara, Y., Komiya, T., Kawabata, H., Sato, M., Fujimoto, H., Furusawa, M., and Noce, T. (1994). Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ-cell lineage. Proc. Natl. Acad. Sci. USA 91, 12 258–12 262.
Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ-cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisF2jsL0%3D&md5=91426689fdc781ec95ce524b42207966CAS |

García-López, A., Couto, E., Canario, A. V. M., Sarasquete, C., and Martínez-Rodríguez, G. (2007). Ovarian development and plasma sex-steroid levels in cultured female Senegalese sole Solea senegalensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 342–354.
Ovarian development and plasma sex-steroid levels in cultured female Senegalese sole Solea senegalensis.Crossref | GoogleScholarGoogle Scholar | 17208478PubMed |

Guzmán, J. M., Cal, R., García-López, A., Chereguini, O., Kight, K., Olmedo, M., Sarasquete, C., Mylonas, C. C., Peleteiro, J. B., Zohar, Y., and Mañanós, E. L. (2011). Effects of in vivo treatment with dopamine antagonist pimozide and gonadotrophin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole, Solea senegalensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158, 235–245.
Effects of in vivo treatment with dopamine antagonist pimozide and gonadotrophin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole, Solea senegalensis.Crossref | GoogleScholarGoogle Scholar | 21112410PubMed |

Higuchi, K., Takeuchi, Y., Miwa, M., Yamamoto, Y., Tsunemoto, K., and Yoshizaki, G. (2011). Colonization, proliferation and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish. Sci. 77, 69–77.
Colonization, proliferation and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1aksLfL&md5=3de2526196f59f5095ba0d0b92222820CAS |

Jones, A. (1972). Studies on egg development and larval rearing of turbot, Scophthalmus maximus. J. Mar. Biol. Assoc. UK 52, 63–66.

Kaji, T., Tanaka, M., Oka, M., Takeuchi, H., Ohsumi, S., and Teruya, K. (1999). Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system. Fish. Sci. 65, 700–707.
| 1:CAS:528:DyaK1MXmvFWktb4%3D&md5=24e17265386262c1a25a4b224ca1f69aCAS |

Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2002). Two isoforms of vasa homologs in a teleost fish: their differential expression during germ-cell differentiation. Mech. Dev. 111, 167–171.
Two isoforms of vasa homologs in a teleost fish: their differential expression during germ-cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFOjsA%3D%3D&md5=5dec8e37d7862d10d4a32e2646138477CAS | 11804791PubMed |

Krøvel, A., and Olsen, L. (2004). Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev. Biol. 271, 190–197.
| 15196960PubMed |

Lin, F., Xu, S., Ma, D., Xiao, Z., Zhao, C., Xiao, Y., Chi, L., Liu, Q., and Li, J. (2012). Germ-line specific expression of a vasa homologue gene in turbot (Scophthalmus maximus): evidence for vasa localization at cleavage furrows in euteleostei. Mol. Reprod. Dev. 79, 803–813.
Germ-line specific expression of a vasa homologue gene in turbot (Scophthalmus maximus): evidence for vasa localization at cleavage furrows in euteleostei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Shtr3J&md5=9f15e4ea92a882b691175a9734946f29CAS | 23124920PubMed |

Linder, P., Lasko, P. F., Ashburner, M., Leroy, P., Nielsen, P. J., Nishi, K., Schiner, J., and Slonimski, P. P. (1989). Birth of the DEAD box. Nature 337, 121–122.
Birth of the DEAD box.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFSgtLs%3D&md5=1fcdf8a4923da5c0cf0354e5a7a6a813CAS | 2563148PubMed |

Livak, K. J., and Schmittgen, T. J. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–(ΔΔCt). Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–(ΔΔCt).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Lucas, J. S., and Southgate, P. C. (2012). ‘Aquaculture: Farming Aquatic Animals and Plants’. 2nd edn. (John Wiley and Sons: Oxford.)

Morita, T., Kumakura, N., Morishima, K., Mitsuboshi, T., Ishida, M., Hara, T., Kudo, S., Miwa, M., Ihara, S., Higuchi, K., Takeuchi, Y., and Yoshizaki, G. (2012). Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata). Biol. Reprod. 86, 176.
Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata).Crossref | GoogleScholarGoogle Scholar | 22460666PubMed |

Nagasawa, K., Takeuchi, Y., Miwa, M., Higuchi, K., Morita, T., Mitsuboshi, T., Miyaki, K., Kadomura, K., and Yoshizaki, G. (2009). cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fish. Sci. 75, 71–79.
cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWrs78%3D&md5=f0b94aba646ec15deb13cd54c3b4a400CAS |

Nóbrega, R. H., Batlouni, S. R., and Franca, L. R. (2009). An overview of functional and stereological evaluation of spermatogenesis and germ-cell transplantation in fish. Fish Physiol. Biochem. 35, 197–206.
An overview of functional and stereological evaluation of spermatogenesis and germ-cell transplantation in fish.Crossref | GoogleScholarGoogle Scholar | 18716890PubMed |

Okutsu, T., Suzuki, K., Takeuchi, Y., Takeuchi, T., and Yoshizaki, G. (2006). Testicular germ cells can colonize sexually undifferentiated embryonic gonads and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA 103, 2725–2729.
Testicular germ cells can colonize sexually undifferentiated embryonic gonads and produce functional eggs in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2rtrc%3D&md5=65a51a68e86ad773cfe979e3be7df4cbCAS | 16473947PubMed |

Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y., and Yoshizaki, G. (2007). Production of trout offspring from triploid salmon parents. Science 317, 1517.
Production of trout offspring from triploid salmon parents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVejt77N&md5=eb2241404523d6675c4df84907de4309CAS | 17872437PubMed |

Pacchiarini, T., Sarasquete, C., Olague, E., Herráez, M. P., and Cabrita, E. (2012). Transplantation of cryopreserved testicular germ cells in flatfish species: a useful technique for reproductive biotechnology. Cryobiology 65, 343–344.
Transplantation of cryopreserved testicular germ cells in flatfish species: a useful technique for reproductive biotechnology.Crossref | GoogleScholarGoogle Scholar |

Pacchiarini, T., Cross, I., Leite, R. B., Gavaia, P., Ortiz-Delgado, J. B., Pousão-Ferreira, P., Rebordinos, L., Sarasquete, C., and Cabrita, E. (2013). Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles. Reprod. Fertil. Dev. 25, 646–660.
Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1CgsLs%3D&md5=afc14212b8cb51ba10e8f743ac8771d6CAS | 22954189PubMed |

Padrós, F., and Crespo, S. (1996). Ontogeny of the lymphoid organs in the turbot Scophtalmus maximus: a light and electron microscope study. Aquaculture 144, 1–16.
Ontogeny of the lymphoid organs in the turbot Scophtalmus maximus: a light and electron microscope study.Crossref | GoogleScholarGoogle Scholar |

Pause, A., and Sonenberg, N. (1992). Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654.
| 1:CAS:528:DyaK38XltVOht74%3D&md5=6c341682ee1297c25a195a4dc272a24cCAS | 1378397PubMed |

Raghuveer, K., and Senthilkumaran, B. (2010). Cloning and differential expression pattern of vasa in the developing and recrudescing gonads of catfish, Clarias gariepinus. Comp. Biochem. Physiol. A 157, 79–85.

Rodriguez-Alvariño, M., and Diaz-Martinez, O. (1990). Producción de alevines de rodaballo (Scophthalmus maximus). Hojas Divulgadoras Núm. 3/90 HD. Ministerio de Agricultura, Pesca y Alimentación.

Sarasquete, C., and Gutiérrez, M. (2005). New tetrachromic VOF stain (type III-g.s) for normal and pathological fish tissues. Eur. J. Histochem. 49, 211–227.
| 1:STN:280:DC%2BD2MzhvVOlsg%3D%3D&md5=6cfe699ef18f3c2468d7932671c3ec35CAS | 15967749PubMed |

Schulz, R. W., de Franca, L. R., Lareyre, J. J., LeGac, F., Chiarini-Garcia, H., Nobrega, R. H., and Miura, T. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411.
Spermatogenesis in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVeguw%3D%3D&md5=dd72119932a67ce99c204a3aa95e9f22CAS | 19348807PubMed |

Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K., and Agata, K. (1999). Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206, 73–87.
Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVehu7w%3D&md5=949b72231a9c215def15b469c433d070CAS | 9918696PubMed |

Takeuchi, Y., Yoshizaki, G., and Takeuchi, T. (2003). Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol. Reprod. 69, 1142–1149.
Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsrs%3D&md5=e98fe12ce60c01d33a858ffb4facae11CAS | 12773413PubMed |

Takeuchi, Y., Yoshizaki, G., and Takeuchi, T. (2004). Biotechnology: surrogate broodstock produces salmonids. Nature 430, 629–630.
Biotechnology: surrogate broodstock produces salmonids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Gis7w%3D&md5=f74175d8ca800a65efa72649f8842bddCAS | 15295587PubMed |

Takeuchi, Y., Higuchi, K., Yatabe, T., Miwa, M., and Yoshizaki, G. (2009). Establishment of spermatogonial cell transplantation in Nibe croaker (Nibea mitsukurii). Biol. Reprod. 81, 1055–1063.
Establishment of spermatogonial cell transplantation in Nibe croaker (Nibea mitsukurii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vK&md5=ec70030df324c19ac6bbe478e9105d7fCAS | 19605788PubMed |

Xu, H., Gui, J., and Hong, Y. (2005). Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev. Dyn. 233, 872–882.
Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKgsL8%3D&md5=5c14e8d0369564419b5341de144659a6CAS | 15880437PubMed |

Yano, A., Suzuki, K., and Yoshizaki, G. (2008). Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions. Biol. Reprod. 78, 151–158.
Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVY%3D&md5=3db24f3bdf7f1b21af27ffae3d64f71aCAS | 17901070PubMed |

Yazawa, R., Takeuchi, Y., Higuchi, K., Yatabe, T., Kabeya, N., and Yoshizaki, G. (2010). Chub mackerel gonads support colonization, survival and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol. Reprod. 82, 896–904.
Chub mackerel gonads support colonization, survival and proliferation of intraperitoneally transplanted xenogenic germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Kht7Y%3D&md5=96399ea90253606a3132f221897be74cCAS | 20089885PubMed |

Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165.
| 1:CAS:528:DyaK2sXlvVehs7Y%3D&md5=9222472d033f9f9c6f92d677e7466894CAS | 9272956PubMed |

Yoshizaki, G., Fujinuma, K., Iwasaki, Y., Okutsu, T., Shikina, S., Yazawa, R., and Takeuchi, Y. (2011). Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp. Biochem. Physiol. D Genomics Proteomics 6, 55–61.
Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources.Crossref | GoogleScholarGoogle Scholar |