Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage

Aimee J. Silla
+ Author Affiliations
- Author Affiliations

Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia. Email: aimee.silla@gmx.com

Reproduction, Fertility and Development 25(8) 1134-1141 https://doi.org/10.1071/RD12223
Submitted: 11 July 2012  Accepted: 18 October 2012   Published: 23 November 2012

Abstract

Anurans exhibit a greater reproductive diversity than any other vertebrate order. However, studies investigating the effects of the external fertilisation environment on fertilisation success are limited to aquatic-breeding species. This study investigated the effects of fertilisation medium osmolality, sperm concentration and short-term oocyte storage on fertilisation success in a terrestrial-breeding anuran, Pseudophryne guentheri. Split-clutch experimental designs were used to determine optimal fertilisation conditions. To determine the effect of short-term sperm storage, sperm viability was assessed using fluorescence microscopy and percentage sperm motility and velocity quantified with a computer-assisted sperm analysis system. Fertilisation success was highest in media ranging in osmolality from 25 mOsm kg–1 to 100 mOsm kg–1, representing a broader range and higher optimal osmolality than previously reported for aquatic breeders. High rates of fertilisation (>75%) were achieved in relatively low sperm concentrations (2.5 × 104 mL–1). Oocytes stored in isotonic solutions (200 mOsm kg–1) retained fertilisation capacity (32%) after 8 h of storage, while sperm suspensions maintained motility (≥26%) for 13 days. Additional studies on terrestrial-breeding anurans will be required to ascertain whether the optimal fertilisation conditions reported reflect adaptations to achieve fertilisation in a terrestrial environment.

Additional keywords : amphibian, assisted reproductive technologies, ART, external fertilisers, fertilisation environment, fertilization, frog, in vitro fertilisation, IVF, reproduction.


References

Albright, R., Mason, B., Miller, M., and Langdon, C. (2010). Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc. Natl. Acad. Sci. USA 107, 20 400–20 404.
Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaju7fJ&md5=49f17646781306ece9574ffc771c575eCAS |

Au, D. W. T., Chiang, M. W. L., Tang, J. Y. M., Yuen, B. B. H., Wang, Y. L., and Wu, R. S. S. (2002). Impairment of sea urchin sperm quality by UV-B radiation: predicting fertilization success from sperm motility. Mar. Pollut. Bull. 44, 583–589.
Impairment of sea urchin sperm quality by UV-B radiation: predicting fertilization success from sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVKgtrs%3D&md5=6769369524b2c79544e12e2e0640eb17CAS |

Benzie, J., and Dixon, P. (1994). The effects of sperm concentration, sperm:egg ratio and gamete age on fertilization success in Crown-of-Thorns starfish (Acanthaster planci) in the laboratory. Biol. Bull. 186, 139–152.
The effects of sperm concentration, sperm:egg ratio and gamete age on fertilization success in Crown-of-Thorns starfish (Acanthaster planci) in the laboratory.Crossref | GoogleScholarGoogle Scholar |

Bongso, T. A., Ng, S. C., Mok, H., Lim, M. N., Teo, H. L., Wong, P. C., and Ratnam, S. S. (1989). Effect of sperm motility on human in vitro fertilization. Arch. Androl. 22, 185–190.
Effect of sperm motility on human in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzjsVCktg%3D%3D&md5=67c6244ae59b55c5de52ab7297d17f5aCAS | 2757456PubMed |

Browne, R. K., Clulow, J., Mahony, M., and Clark, A. (1998). Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology 37, 339–345.
Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm.Crossref | GoogleScholarGoogle Scholar | 9917350PubMed |

Browne, R. K., Clulow, J., and Mahony, M. (2001). Short-term storage of cane toad (Bufo marinus) gametes. Reproduction 121, 167–173.
Short-term storage of cane toad (Bufo marinus) gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsg%3D%3D&md5=b030b656c60b4b4f564543382812fe43CAS | 11226040PubMed |

Browne, R. K., Clulow, J., and Mahony, M. (2002). The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. Cryo Lett. 23, 129–136.
| 1:CAS:528:DC%2BD38XktlOnsb4%3D&md5=c68be2500b4309b34306eaec71882e75CAS |

Cabada, M. O. (1975). Sperm concentration and fertilization rate in Bufo arenarum (Amphibia: Anura). J. Exp. Biol. 62, 481–486.
| 1:STN:280:DyaE28%2Fps1ChtA%3D%3D&md5=883609b6a0c830aa4ef9aec02d8d08daCAS | 812941PubMed |

Cartledge, V. A., Withers, P. C., McMaster, K. A., Thompson, G. G., and Bradshaw, S. D. (2006a). Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae). J. Exp. Biol. 209, 3309–3321.
Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2murzP&md5=19caefd69529ede76e7e77d9bde9f514CAS | 16916967PubMed |

Cartledge, V. A., Withers, P. C., Thompson, G. G., and McMaster, K. A. (2006b). Water relations of the burrowing sandhill frog, Arenophryne rotunda (Myobatrachidae). J. Comp. Physiol. B 176, 295–302.
Water relations of the burrowing sandhill frog, Arenophryne rotunda (Myobatrachidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlCisbY%3D&md5=8f0dd1cac9c38531eda011669c72c010CAS | 16315052PubMed |

Ciereszko, A., Glogowski, J., and Dabrowski, K. (2000). Fertilization in landlocked sea lamprey: storage of gametes, optimal sperm:egg ratio and methods of assessing fertilization success. J. Fish Biol. 56, 495–505.

Crossland, M. R. (1998). Predation by tadpoles on toxic toad eggs: the effect of tadpole size on predation success and tadpole survival. J. Herpetol. 32, 443–446.
Predation by tadpoles on toxic toad eggs: the effect of tadpole size on predation success and tadpole survival.Crossref | GoogleScholarGoogle Scholar |

Del Pino, E. M. (1973). Interactions between gametes and environment in the toad Xenopus laevis (Daudin) and their relationship to fertilization. J. Exp. Zool. 185, 121–132.
Interactions between gametes and environment in the toad Xenopus laevis (Daudin) and their relationship to fertilization.Crossref | GoogleScholarGoogle Scholar |

Duellman, W. E., and Trueb, L. (1994). ‘Biology of Amphibians’. (Johns Hopkins University Press: Baltimore.)

Edwards, D. L., Mahony, M. J., and Clulow, J. (2004). Effect of sperm concentration, medium osmolality and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis). Reprod. Fertil. Dev. 16, 347–354.
Effect of sperm concentration, medium osmolality and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cvgtF2gsw%3D%3D&md5=7bec02f79e52f7a8211c7f03d8233259CAS | 15304208PubMed |

Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190.

Haddad, C. F. B., and Prado, C. P. A. (2005). Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217.
Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil.Crossref | GoogleScholarGoogle Scholar |

Hollinger, T. G., and Corton, G. L. (1980). Artificial fertilization of gametes from the South African clawed frog, Xenopus laevis. Gamete Res. 3, 45–57.
Artificial fertilization of gametes from the South African clawed frog, Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktVCnsrk%3D&md5=57c64da8fcf2f7dcb5f4380ac9b6fd29CAS |

Inger, R. F., and Bacon, J. P. (1968). Annual reproduction and clutch size in rainforest frogs from Sarawak. Copeia 1968, 602–606.
Annual reproduction and clutch size in rainforest frogs from Sarawak.Crossref | GoogleScholarGoogle Scholar |

Katagiri, C. (1961). On the fertilizability of the frog egg, I. Journal of the Faculty of Science. Hokkaido University 14, 607–613.

King, E. G., and Kaplan, R. H. (1997). Estimating ovum size in amphibians: egg size increases differently among species during early development. J. Herpetol. 31, 299–302.
Estimating ovum size in amphibians: egg size increases differently among species during early development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnmtVegsA%3D%3D&md5=4bcd32b918384bf29fb4534ad7addc3fCAS |

Kupriyanova, E., and Havenhand, J. N. (2002). Variation in sperm swimming behaviour and its effect on fertilization success in the serpulid polychaete Galeolaria caespitosa. Invertebr. Reprod. Dev. 41, 21–26.
Variation in sperm swimming behaviour and its effect on fertilization success in the serpulid polychaete Galeolaria caespitosa.Crossref | GoogleScholarGoogle Scholar |

Kupriyanova, E., and Havenhand, J. N. (2005). Effects of temperature on sperm swimming behaviour, respiration and fertilization success in the serpulid polychaete, Galeolaria caespitosa (Annelida: Serpulidae). Invertebr. Reprod. Dev. 48, 7–17.
Effects of temperature on sperm swimming behaviour, respiration and fertilization success in the serpulid polychaete, Galeolaria caespitosa (Annelida: Serpulidae).Crossref | GoogleScholarGoogle Scholar |

Levitan, D. R. (1998). Sperm limitation, gamete competition and sexual selection in external fertilisers. In ‘Sperm Competition and Sexual Selection’. (Eds T. R. Birkhead and A. P. Möller.) pp. 175–218. (Academic Press: London.)

Main, A. R., Littlejohn, M. J., and Lee, A. (1959). Ecology of Australian frogs. In ‘Biogeography and Ecology of Australia’. (Eds A. Keast, R. L. Crocker and C. S. Christian.) pp. 396–411. (Junk: Netherlands.)

Parker, L. M., Ross, P. M., and O’Connor, W. A. (2009). The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob. Change Biol. 15, 2123–2136.
The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850).Crossref | GoogleScholarGoogle Scholar |

Powell, D. K. (2001). Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna. Marine ecology. Progress series (Halstenbek) 215, 191–200.
Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna.Crossref | GoogleScholarGoogle Scholar |

Reynolds, S. J., Christian, K. A., Tracy, C. R., and Hutley, L. B. (2011). Changes in body fluids of the cocooning fossorial frog Cyclorana australis in a seasonally dry environment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 348–354.
Changes in body fluids of the cocooning fossorial frog Cyclorana australis in a seasonally dry environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ntL7L&md5=9ba997dd52a0b04ccac349179f03e0d6CAS | 21777688PubMed |

Rugh, R. (1934). Induced ovulation and artificial fertilization in the frog. Biol. Bull. 66, 22–29.
Induced ovulation and artificial fertilization in the frog.Crossref | GoogleScholarGoogle Scholar |

Schlichter, L. C. (1981). Low pH affects the fertilization and development of Rana pipiens eggs. Can. J. Zool. 59, 1693–1699.
Low pH affects the fertilization and development of Rana pipiens eggs.Crossref | GoogleScholarGoogle Scholar |

Scott, A. P., and Baynes, S. M. (1980). A review of the biology, handling and storage of salmonid spermatozoa. J. Fish Biol. 17, 707–739.
A review of the biology, handling and storage of salmonid spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Serrão, E. A., Kautsky, L., and Brawley, S. H. (1996). Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107, 1–12.
Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes.Crossref | GoogleScholarGoogle Scholar |

Silla, A. J. (2011). Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Günther’s toadlet, Pseudophryne guentheri. Reprod. Biol. Endocrinol. 9, 68.
Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Günther’s toadlet, Pseudophryne guentheri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVKrt7k%3D&md5=d724955c7413763e43bdc18e3a34ef08CAS | 21599916PubMed |

Smith-Gill, S. J. (1980). In vitro fertilization and assessment of male reproductive potential using mammalian gonadotrophin-releasing hormone to induce spermiation in Rana sylvatica. Copeia 1980, 723–728.
In vitro fertilization and assessment of male reproductive potential using mammalian gonadotrophin-releasing hormone to induce spermiation in Rana sylvatica.Crossref | GoogleScholarGoogle Scholar |

Soudakevicz, T. (1874). Report on progress of pisciculture in Russia. U.S. Commissioner of Fish and Fisheries 2, 493–513.

Subcommittee on Amphibian Standards (1974). ‘Amphibians: Guidelines for the Breeding, Care and Management of Laboratory Animals’. (National Academy of Sciences: Washington, DC.)

Tyler, J., and Doughty, P. (2009). ‘Field Guide to Frogs of Western Australia’. (Western Australian Museum: Perth.)

Watson, G. F., and Martin, A. A. (1973). Life history, larval morphology and relationships of Australian Leptodactylid frogs. Transactions of the Royal Society of South Australia 97, 33–45.

Wells, K. D. (2007). Chapter 10: The natural history of amphibian reproduction. In ‘The Ecology and Behavior of Amphibians’. (Ed. K. D. Wells.) pp. 451–515. (University of Chicago Press: Chicago.)

Wolf, D. P., and Hedrick, J. L. (1971). A molecular approach to fertilization: II. Viability and artificial fertilization of Xenopus laevis gametes. Dev. Biol. 25, 348–359.
A molecular approach to fertilization: II. Viability and artificial fertilization of Xenopus laevis gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkslejt7w%3D&md5=be552eac865774565a10819d87c3887cCAS | 5567826PubMed |

Woodruff, D. S. (1972). The evolutionary significance of hybrid zones in Pseudophryne (Anura: Leptodactylidae). PhD Thesis, University of Melbourne.