Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro

Toshikiyo Takahashi A B D , Yasushi Inaba A D , Tamas Somfai A E , Masahiro Kaneda A , Masaya Geshi A , Takashi Nagai A and Noboru Manabe C
+ Author Affiliations
- Author Affiliations

A NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

B Livestock Experiment Station, Akita Prefectural Agriculture Forestry and Fisheries Research Centre, 13-3 Kaiso-numayachi, Jinguji, Daisen, Akita 019-1701, Japan.

C Animal Resource Science Centre, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago 3145, Kasama, Ibaraki 319-0206, Japan.

D These authors contributed equally to the paper.

E Corresponding author. Email: somfai@affrc.go.jp

Reproduction, Fertility and Development 25(4) 589-599 https://doi.org/10.1071/RD11262
Submitted: 12 October 2011  Accepted: 4 May 2012   Published: 4 June 2012

Abstract

High lipid content in embryos is associated with low freezing tolerance. This study assessed the effects of exogenous l-carnitine, an enhancer of lipid metabolism, on the in vitro development and freezing survival of bovine embryos. Also, effects on metabolic activity, reactive oxygen species (ROS) and apoptosis were investigated. Supplementation of embryo culture medium with 1.518 mM or 3.030 mM l-carnitine significantly increased the rates of zygote development to the blastocyst stage and blastocyst cell numbers whereas 6.072 mM of this compound did not improve embryo development. Survival rates after slow freezing of blastocysts were significantly higher when embryos were cultured in the presence of 1.518 mM or 3.030 mM l-carnitine compared with the control. A lower density of lipid droplets was detected in l-carnitine-treated blastocysts compared with the control. l-carnitine significantly reduced ROS levels in 2-cell embryos but did not reduce ROS levels at later stages. The apoptotic cell rate was not different between control and l-carnitine-treated blastocysts. l-carnitine significantly increased ATP levels in 2-cell embryos but not at the 8-cell or blastocyst stages. l-carnitine increased the expression of metabolism-related ATP6 and COX1 genes in blastocysts. In conclusion, l-carnitine supplementation enhanced lipid metabolism in embryos resulting in improved development and cryotolerance of bovine blastocysts produced in vitro.

Additional keywords: freezing, lipid, metabolism.


References

Abdelrazik, H., Sharma, R., Mahfouz, R., and Agarwal, A. (2009). l-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 91, 589–596.
l-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2nsbc%3D&md5=2de3d901b386958e31a56feef4066c28CAS | 18249387PubMed |

Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur4%3D&md5=6c4e7ed3c566741d74c86816b43dc697CAS | 11774376PubMed |

Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. (2004). Image processing with ImageJ. Biophoton. Int. 11, 36–42.

Bain, N. T., Madan, P., and Betts, D. H. (2011). The early embryo response to intracellular reactive oxygen species is developmentally regulated. Reprod. Fertil. Dev. 23, 561–575.
The early embryo response to intracellular reactive oxygen species is developmentally regulated.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFKnsLY%3D&md5=2e51c72b6003c3d091766d9216436a2bCAS | 21557923PubMed |

Bousquet, D., Twagiramungu, H., Morin, N., Brisson, C., Carboneau, G., and Durocher, J. (1999). In vitro embryo production in the cow: an effective alternative to the conventional embryo production approach. Theriogenology 51, 59–70.
In vitro embryo production in the cow: an effective alternative to the conventional embryo production approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ptFCjtA%3D%3D&md5=9120f7d6404d00f0613bdd7b1fd2146bCAS | 10729062PubMed |

Brackett, B. G., and Oliphant, G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–274.
Capacitation of rabbit spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xnt1WltQ%3D%3D&md5=aaf56920baf0ad059c9c2b3065662c71CAS | 1122333PubMed |

Dalvit, G. C., Cetica, P. D., Pintos, L. N., and Beconi, M. T. (2005). Reactive oxygen species in bovine embryo in vitro production. Biocell 2, 209–212.

Dochi, O., Imai, K., and Takakura, H. (1995). Birth of calves after direct transfer of thawed bovine embryos stored frozen in ethylene glycol. Anim. Reprod. Sci. 38, 179–185.
Birth of calves after direct transfer of thawed bovine embryos stored frozen in ethylene glycol.Crossref | GoogleScholarGoogle Scholar |

Dunning, K. R., Cashman, K., Russell, D. L., Thompson, J. G., Norman, R. J., and Robker, R. L. (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918.
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfN&md5=1f81538ef37347d8d384bad37e91dea3CAS | 20686180PubMed |

Fouladi-Nashta, A. A., Alberio, R., Kafi, M., Nicholas, B., Campbell, K. H., and Webb, R. (2005). Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod. Biomed. Online 10, 497–502.
Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mtFKgtw%3D%3D&md5=65fd62b6992023d39b7b6f0ecae649a8CAS | 15901458PubMed |

Genicot, G., Leroy, J. L. M. R., Van Soom, A., and Donnay, I. (2005). The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181–1194.
The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSltb8%3D&md5=3cc3539d4201c3e42a9711cb12db50a5CAS | 15710202PubMed |

Guerin, P., El Mouatassim, S., and Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFyms7c%3D&md5=42d7d91468afb929dfcacd5addaea9d1CAS | 11284661PubMed |

Gülçin, I. (2006). Antioxidant and antiradical activities of l-carnitine. Life Sci. 78, 803–811.
Antioxidant and antiradical activities of l-carnitine.Crossref | GoogleScholarGoogle Scholar | 16253281PubMed |

Gutiérrez-Adán, A., Rizos, D., Fair, T., Moreira, P. N., Pintado, B., de la Fuente, J., Boland, M. P., and Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–448.
Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 15236328PubMed |

Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002). REDOX regulation of early embryo development. Reproduction 123, 479–486.
REDOX regulation of early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtLk%3D&md5=9fd096bc97f1acf8effd2811c5de9304CAS | 11914110PubMed |

He, T., Peterson, T. E., Holmuhamedov, E. L., Terzic, A., Caplice, N. M., Oberley, L. W., and Katusic, Z. S. (2004). Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler. Thromb. Vasc. Biol. 24, 2021–2027.
Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptV2ju78%3D&md5=72545c6640399eb6bc7d28df9be5598aCAS | 15319267PubMed |

Imai, K., Tagawa, M., Yoshioka, H., Matoba, S., Narita, M., Inaba, Y., Aikawa, Y., Ohtake, M., and Kobayashi, S. (2006). The efficiency of embryo production by ovum pick-up and in vitro fertilization in cattle. J. Reprod. Dev. 52, 19–29.

Kerner, J., and Hoppel, C. (2000). Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486, 1–17.
| 1:CAS:528:DC%2BD3cXlt1Snt74%3D&md5=affc2d6df1399e54fa9c2302a93d435fCAS | 10856709PubMed |

Leese, H. J., Baumann, C. G., Brison, D. R., McEvoy, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–672.
Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gsA%3D%3D&md5=1030dba39ee64b1f4c93e719b1e5f92eCAS | 19019836PubMed |

Macháty, Z., Thompson, J. G., Abeydeera, L. R., Day, B. N., and Prather, R. S. (2001). Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro-produced porcine embryos. Mol. Reprod. Dev. 58, 39–44.
Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro-produced porcine embryos.Crossref | GoogleScholarGoogle Scholar | 11144218PubMed |

Men, H., Agca, Y., Riley, L. K., and Critser, J. K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008–2016.
Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGjtL3K&md5=8113186a0e98af3eaac45780840fc526CAS | 16870242PubMed |

Nagashima, H., Kashiwazaki, N., Ashman, R. J., Grupen, C. G., and Nottle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
Cryopreservation of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslSls7Y%3D&md5=e7d65cd7af4e813020a585d2774d558cCAS | 7700349PubMed |

Nasr-Esfahani, M. H., Aitken, J. R., and Johnson, M. H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109, 501–507.
| 1:CAS:528:DyaK3cXlsV2nsbo%3D&md5=7fde4e24594e4c4d28dd7ed401222c8eCAS | 2401209PubMed |

Oey, N. A., Ijlst, L., van Roermund, C. W., Wijburg, F. A., and Wanders, R. J. (2005). Dif-1 and colt, both implicated in early embryonic development, encode carnitine acylcarnitine translocase. Mol. Genet. Metab. 85, 121–124.
Dif-1 and colt, both implicated in early embryonic development, encode carnitine acylcarnitine translocase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Gns74%3D&md5=dd3178e31a863043a0106f607549f40eCAS | 15896656PubMed |

Pereira, R. M., Baptista, M. C., Vasques, M. I., Horta, A. E. M., Portugal, P. V., Bessa, R. J. B., Chagas e Silva, J., Silva Pereira, M., and Marques, C. C. (2007). Cryo-survival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t, 12c CLA). Anim. Reprod. Sci. 98, 293–301.
Cryo-survival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t, 12c CLA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Gnu7k%3D&md5=976eed4cb613f988ffaaaa97fbc6ae69CAS | 16644149PubMed |

Pillich, R. T., Scarsella, G., and Risuleo, G. (2005). Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-l-carnitine to mouse fibroblasts in culture. Exp. Cell Res. 306, 1–8.
Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-l-carnitine to mouse fibroblasts in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVOht7o%3D&md5=1cbf6002348e50320ee922f637255e3eCAS | 15878327PubMed |

Rosenkrans, C. F., Zeng, G. Q., Mcnamara, G. T., Schoff, P. K., and First, N. L. (1993). Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod. 49, 459–462.
Development of bovine embryos in vitro as affected by energy substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFWk&md5=a5231f5d00bc660fd97a1a11cc3bcc8aCAS | 8399836PubMed |

Saito, N., Imai, K., and Tomizawa, M. (1994). Effect of sugars addition on the survival of vitrified bovine blastocysts produced in vitro. Theriogenology 41, 1053–1060.
Effect of sugars addition on the survival of vitrified bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVaitA%3D%3D&md5=7723b79ef5cd25bd580a9e79a62674aaCAS | 16727458PubMed |

Somfai, T., Kaneda, M., Akagi, S., Watanabe, S., Haraguchi, S., Mizutani, E., Dang-Nguyen, T. Q., Geshi, M., Kikuchi, K., and Nagai, T. (2011). Enhancement of lipid metabolism with l-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod. Fertil. Dev. 23, 912–920.
Enhancement of lipid metabolism with l-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrtb7M&md5=b10e91bc2a8b58f1c6b503468f0be2a9CAS | 21871210PubMed |

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=6d2ac9c4e7dc9eb10db34f96f2204365CAS | 11207207PubMed |

Stringfellow, D. A., and Seidel, S. M. (1998). ‘Manual of the International Embryo Transfer Society: A Procedural Guide and General Information for the Use of Embryo Transfer Technology Emphasizing Sanitary Procedures’. (International Embryo Transfer Society: Savoy, IL, USA.)

Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtr4%3D&md5=fb609e753626bde0b2f0de4052977587CAS | 12887276PubMed |

Sturmey, R. G., Reis, A., Leese, H. J., and McEvoy, T. G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 19660080PubMed |

Tatemoto, H., Sakurai, N., and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu78%3D&md5=94405b7a063834d36079657031e3d253CAS | 10952924PubMed |

Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., and Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 71, 1150–1157.
Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7c%3D&md5=8ddfb079af7bd86aa1d04f53ad379b3aCAS | 15175235PubMed |

Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Oxygen uptake and carbohydrate metabolism by in vitro-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=5fbb9521c8f5a620df2e2d44b5700c98CAS | 8699414PubMed |

Thompson, J. G., McNaughton, C., Gasparrini, B., McGowan, L. T., and Tervit, H. R. (2000). Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J. Reprod. Fertil. 118, 47–55.
| 1:CAS:528:DC%2BD3cXpsl2guw%3D%3D&md5=dd0b70154191dab88578623ce562d6f0CAS | 10793625PubMed |

Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M., and Trounson, A. O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–29.
Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 12513888PubMed |

Ushijima, H., Yamakawa, H., and Nagashima, H. (1996). Cryopreservation of bovine IVM/IVF embryos at early cleavage stage following removal of cytoplasmic lipid droplets. Theriogenology 45, 159.
Cryopreservation of bovine IVM/IVF embryos at early cleavage stage following removal of cytoplasmic lipid droplets.Crossref | GoogleScholarGoogle Scholar |

Vajta, G. (2000). Vitrification of the oocytes and embryos of domestic animals. Anim. Reprod. Sci. 60–61, 357–364.
Vitrification of the oocytes and embryos of domestic animals.Crossref | GoogleScholarGoogle Scholar | 10844207PubMed |

Van Langendonckt, A., Auquier, P., Donnay, I., Massip, A., and Dessy, F. (1996). Acceleration of in vitro bovine embryos development in the presence of fetal calf serum. Theriogenology 45, 194.
Acceleration of in vitro bovine embryos development in the presence of fetal calf serum.Crossref | GoogleScholarGoogle Scholar |

Wu, G. Q., Jia, B. Y., Li, J. J., Fu, X. W., Zhou, G. B., Hou, Y. P., and Zhu, S. E. (2011). l-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 76, 785–793.
l-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtValsLjJ&md5=8b8d2b7757a17d2352b2f15c90b51743CAS | 21705056PubMed |

Yamada, T., Imai, H., and Yamada, M. (2006). Beneficial effects of acetyl-l-carnitine treatment during IVM on post-fertilization development of bovine oocytes in vitro. Reprod. Fertil. Dev. 18, 280–281.
Beneficial effects of acetyl-l-carnitine treatment during IVM on post-fertilization development of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |

Ye, J., Li, J., Yu, Y., Wei, Q., Deng, W., and Yu, L. (2010). l-carnitine attenuates oxidant injury in HK-2 cells via ROS–mitochondria pathway. Regul. Pept. 161, 58–66.
l-carnitine attenuates oxidant injury in HK-2 cells via ROS–mitochondria pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKisb4%3D&md5=ef4a688b592cfed31b983a1d2696ea1cCAS | 20093144PubMed |

Yoshioka, K., Othman, A. M., Taniguchi, T., Yamanaka, H., and Sekikawa, K. (1997). Differential patterns of blastulation in bovine morulae cultured in synthetic oviduct fluid medium containing FCS or BSA. Theriogenology 48, 997–1006.
Differential patterns of blastulation in bovine morulae cultured in synthetic oviduct fluid medium containing FCS or BSA.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtV2nsg%3D%3D&md5=a7980bcd0f8fa2bfe4491bf8c8539908CAS | 16728189PubMed |