Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Impaired mitochondrial function in murine oocytes is associated with controlled ovarian hyperstimulationand in vitro maturation

Hongshan Ge A B D , Theodore L. Tollner C , Zhen Hu B , Mimi Da A , Xiaohe Li A , HeQin Guan B , Dan Shan B , Jieqiang Lu A , Changjiang Huang A B and Qiaoxiang Dong A B D
+ Author Affiliations
- Author Affiliations

A Reproductive Health Center, Second Affiliated Hospital of Wenzhou Medical College, 109 Xueyuan Road, Wenzhou, Zhejiang Province, People’s Republic of China.

B The College of Environment and Public Health, Wenzhou Medical College, Wenzhou, Zhejiang Province, People’s Republic of China.

C Department of Obstetrics and Gynecology, School of Medicine, Center for Health and the Environment and Bodega Marine Laboratory, University of California, Davis, CA 95616, USA.

D Corresponding author. Emails: dafeng76@126.com; dqxdong@163.com

Reproduction, Fertility and Development 24(7) 945-952 https://doi.org/10.1071/RD11212
Submitted: 22 August 2011  Accepted: 29 December 2011   Published: 20 March 2012

Abstract

The present study was designed to determine whether controlled ovarian hyperstimulation (COH) and in vitro maturation (IVM), two common clinical procedures in human IVF treatment, have an impact on mitochondrial DNA (mtDNA) copy number and mitochondrial function in oocytes. Matured mouse oocytes recovered following COH, IVM and natural cycles (NC), which simulated those treatments in human clinic IVF treatment. The copies of mtDNA, the activity of mitochondria as determined by inner mitochondrial membrane potential and oocyte adenosine trisphosphate (ATP) content, pattern of mitochondrial distribution, reactive oxygen species (ROS) levels and the integrity of the cytoskeleton were evaluated in oocytes. Significant differences were detected between COH and NC groups in all measures, except the pattern of mitochondrial distribution and ROS levels. There were also significant differences detected between IVM and NC treatment groups in the copies of mitochondrial DNA, the level of ROS and the integrity of the cytoskeleton in oocytes. In conclusion, the results of this investigation indicate that non-physiological COH and IVM treatments inhibit mtDNA replication, alter mitochondrial function and increase the percentage of abnormal cytoskeleton and ROS production. Damage related to the mitochondria may partly explain the low efficiency of IVF and high rate of embryonic loss associated with these clinical procedures.

Additional keywords: mitochondrial DNA copies.


References

Agarwal, A., Gupta, S., and Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 14, 3–28.

Allen, V. M., Wilson, R. D., and Cheung, A. (2006). Pregnancy outcomes after assisted reproductive technology. J. Obstet. Gynaecol. Can. 28, 220–250.
| 16650361PubMed |

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.
Sequence and organization of the human mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt1OlsL8%3D&md5=99d744be60f466294c4b67662a72a560CAS | 7219534PubMed |

Baka, S. G., Toth, T. L., Veeck, L. L., Jones, H. W., Muasher, S. J., and Lanzendorf, S. E. (1995). Evaluation of the spindle apparatus of in-vitro matured human oocytes following cryopreservation. Hum. Reprod. 10, 1816–1820.
| 1:STN:280:DyaK28%2FjtlWmtw%3D%3D&md5=3d45850b1c2ad8813ae57d6c7a50b08dCAS | 8582988PubMed |

Bavister, B. D. (2000). Interactions between embryos and the culture milieu. Theriogenology 53, 619–626.
Interactions between embryos and the culture milieu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlarsw%3D%3D&md5=d97c9279680954faaf733795d1deb068CAS | 10735054PubMed |

Bavister, B. D., and Squirrell, J. M. (2000). Mitochondrial distribution and function in oocytes and early embryos. Hum. Reprod. 15, 189–198.
| 11041524PubMed |

Benagiano, G., Farris, M., and Grudzinskas, G. (2010). Fate of fertilized human oocytes. Reprod. Biomed. Online 21, 732–741.
Fate of fertilized human oocytes.Crossref | GoogleScholarGoogle Scholar | 21050816PubMed |

Bentov, Y., Esfandiari, N., Burstein, E., and Casper, R. F. (2010). The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertil. Steril. 93, 272–275.
The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wmt7c%3D&md5=a175d9d48ecb382ccf7482526b197142CAS | 19732879PubMed |

Calarco, P. G. (1995). Polarization of mitochondria in the unfertilized mouse oocyte. Dev. Genet. 16, 36–43.
Polarization of mitochondria in the unfertilized mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3nsl2qsQ%3D%3D&md5=0112e18f9d2539bc3d16754cb299902eCAS | 7538924PubMed |

Chae, H. D., Park, E. J., Kim, S. H., Kim, C. H., Kang, B. M., and Chang, Y. S. (2001). Case report: ovarian hyperstimulation syndrome complicating a spontaneous singleton pregnancy: a case report. J. Assist. Reprod. Genet. 18, 120–123.
Case report: ovarian hyperstimulation syndrome complicating a spontaneous singleton pregnancy: a case report.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvnt1Kntw%3D%3D&md5=686ef74b0c3a426e47baf19943609ce8CAS | 11285979PubMed |

Chao, H. T., Lee, S. Y., Lee, H. M., Liao, T. L., Wei, Y. H., and Kao, S. H. (2005). Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Ann. NY Acad. Sci. 1042, 148–156.
Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cqsbs%3D&md5=d16a278669028e86a87da3b45219c274CAS | 15965057PubMed |

Combelles, C. M., and Albertini, D. F. (2003). Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse. Biol. Reprod. 68, 812–821.
Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGlu7o%3D&md5=d99ec1cdfb5adedcece113e91689d3b7CAS | 12604630PubMed |

Cummins, J. M. (2002). The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod. Biomed. Online 4, 176–182.
The role of maternal mitochondria during oogenesis, fertilization and embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlyktbY%3D&md5=26dc462eb05182ed805833ef6d41c44cCAS | 12470582PubMed |

de Mouzon, J., Goossens, V., Bhattacharya, S., Castilla, J. A., Ferraretti, A. P., Korsak, V., Kupka, M., Nygren, K. G., and Nyboe Andersen, A. (2010). European IVF-monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum. Reprod. 25, 1851–1862.
European IVF-monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjgtFeqtA%3D%3D&md5=b26e4b4781a420876028a5e236abb693CAS | 20570973PubMed |

Dell’Aquila, M. E., Ambruosi, B., Santis, T. D., and Cho, Y. S. (2009). Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation. Fertil. Steril. 91, 249–255.
Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation.Crossref | GoogleScholarGoogle Scholar | 18367183PubMed |

El Shourbagy, S. H., Spikings, E. C., Freitas, M., and John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
Mitochondria directly influence fertilisation outcome in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=f9a37ec7bfb12652f4929760602aafeaCAS | 16452717PubMed |

Fulka, J., First, N. L., and Moor, R. M. (1998). Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Mol. Hum. Reprod. 4, 41–49.
Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvV2qtL8%3D&md5=ab6ebab4a8f6fdd54a4b786628ddde18CAS | 9510010PubMed |

Funahashi, H., Koike, T., and Sakai, R. (2008). Effect of glucose and pyruvate on nuclear and cytoplasmic maturation of porcine oocytes in a chemically defined medium. Theriogenology 70, 1041–1047.
Effect of glucose and pyruvate on nuclear and cytoplasmic maturation of porcine oocytes in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFajurjK&md5=628f81baa6d6f6f4993c1f22dd0f2ac2CAS | 18657854PubMed |

Ge, H. S., Huang, X. F., Zhang, W., Zhao, J. Z., Lin, J. J., and Zhou, W. (2008). Exposure to human chorionic gonadotropin during in vitro maturation does not improve the maturation rate and developmental potential of immature oocytes from patients with polycystic ovary syndrome. Fertil. Steril. 89, 98–103.
Exposure to human chorionic gonadotropin during in vitro maturation does not improve the maturation rate and developmental potential of immature oocytes from patients with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslSrsbg%3D&md5=a80bc39add7f934cbc1d1ab940f1db9cCAS | 17524398PubMed |

Gibson, T. C., Kubisch, H. M., and Brenner, C. A. (2005). Mitochondrial DNA deletions in rhesus macaque oocytes and embryos. Mol. Hum. Reprod. 11, 785–789.
Mitochondrial DNA deletions in rhesus macaque oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFahtrg%3D&md5=76fde4aff8cbffad1b8c8787cf248588CAS | 16373367PubMed |

Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002). REDOX regulation of early embryo development. Reproduction 123, 479–486.
REDOX regulation of early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtLk%3D&md5=9fd096bc97f1acf8effd2811c5de9304CAS | 11914110PubMed |

Johnson, M. H., and Nasresfahani, M. H. (1994). Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16, 31–38.
Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFGhu7c%3D&md5=3a1f9b4646b6dc9ed200ccb75608995dCAS | 8141805PubMed |

Lee, S. T., Han, H. J., Oh, S. J., Lee, E. J., Han, J. Y., and Lim, J. M. (2006a). Influence of ovarian hyperstimulation and ovulation induction on the cytoskeletal dynamics and developmental competence of oocytes. Mol. Reprod. Dev. 73, 1022–1033.
Influence of ovarian hyperstimulation and ovulation induction on the cytoskeletal dynamics and developmental competence of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Ckt78%3D&md5=e8367be6c0e8215d673db884ddd2387aCAS | 16705709PubMed |

Lee, S. T., Oh, S. J., Lee, E. J., Han, H. J., and Lim, J. M. (2006b). Adenosine triphosphate synthesis, mitochondrial number and activity, and pyruvate uptake in oocytes after gonadotropin injections. Fertil. Steril. 86, 1164–1169.
Adenosine triphosphate synthesis, mitochondrial number and activity, and pyruvate uptake in oocytes after gonadotropin injections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eht7rI&md5=9d999e684ce4dfd4a542c09ca10010e7CAS | 16962114PubMed |

Liu, L., Trimarchi, J. R., and Keefe, D. L. (2000). Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol. Reprod. 62, 1745–1753.
Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsbg%3D&md5=9f72c4bbc1db980be3edadbf11458e2bCAS | 10819779PubMed |

Liu, S., Li, Y., Gao, X., Yan, J. H., and Chen, Z. (2010). Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil. Steril. 93, 1550–1555.
Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution.Crossref | GoogleScholarGoogle Scholar | 19423101PubMed |

Liu, S., Feng, H. L., Marchesi, D., Chen, Z. J., and Hershlag, A. (2011). Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model. Fertil. Steril. 95, 1503–1506.e1–3.
Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1CktLo%3D&md5=187ad04fb92be6ed60ddbffd1c2815c6CAS | 21071022PubMed |

Lopes, A. S., Lane, M., and Thompson, J. G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum. Reprod. 25, 2762–2773.
Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb7O&md5=0d828abd9e62cad1bc64bf8a85f641f1CAS | 20823113PubMed |

May-Panloup, P., Chretien, M. F., Jacques, C., Vasseur, C., Malthiery, Y., and Reynier, P. (2005). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 20, 593–597.
Low oocyte mitochondrial DNA content in ovarian insufficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSgsbc%3D&md5=43cb8b0dfcfe70a6208c8e8b7f606faeCAS | 15608038PubMed |

Miyamoto, K., Sato, E. F., Kasahara, E., Jikumaru, M., Hiramoto, K., Tabata, H., Katsuragi, M., Odo, S., Utsumi, K., and Inoue, M. (2010). Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radic. Biol. Med. 49, 674–681.
Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWrsbw%3D&md5=a2c33cd91d5c70212406c98899a96035CAS | 20621580PubMed |

Motta, P. M., Nottola, S. A., Makabe, S., and Heyn, R. (2000). Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 15, 129–147.
| 11041520PubMed |

Mtango, N. R., Harvey, A. J., Latham, K. E., and Brenner, C. A. (2008). Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos. Reprod. Fertil. Dev. 20, 846–859.
Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWmsLfI&md5=fa8aecaae893b873f8039d85b9173714CAS | 18842187PubMed |

Nagai, S., Mabuchi, T., Hirata, S., Shoda, T., Kasai, T., Yokota, S., Shitara, H., Yonekawa, H., and Hoshi, K. (2006). Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J. Exp. Med. 210, 137–144.
Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2rtbjN&md5=b6af6815b09a2880374cb3765ecd78e4CAS | 17023767PubMed |

Patrizio, P., Bianchi, V., Lalioti, M. D., Gerasimova, T., and Sakkas, D. (2007). High rate of biological loss in assisted reproduction: it is in the seed, not in the soil Reprod. Biomed. Online 14, 92–95.
High rate of biological loss in assisted reproduction: it is in the seed, not in the soilCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2Fht1aguw%3D%3D&md5=a5d7c6da7ea14c8b2ab9b6b59c0db48eCAS | 17207339PubMed |

Piko, L., and Taylor, K. D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374.
Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvFGmtLY%3D&md5=8df8dcf52a9e2931f5ec6ca1c709dfebCAS | 2443405PubMed |

Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=aeab25169aae3ec1e7500cb09b31e477CAS | 11331664PubMed |

Ruan, H. C., Zhu, X. M., Luo, Q., Liu, A. X., Qian, Y. L., Zhou, C. Y., Jin, F., Huang, H. F., and Sheng, J. Z. (2006). Ovarian stimulation with GnRH agonist, but not GnRH antagonist, partially restores the expression of endometrial integrin β3 and leukaemia-inhibitory factor and improves uterine receptivity in mice. Hum. Reprod. 21, 2521–2529.
Ovarian stimulation with GnRH agonist, but not GnRH antagonist, partially restores the expression of endometrial integrin β3 and leukaemia-inhibitory factor and improves uterine receptivity in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWlt73J&md5=0b16f6d415e6eaa479ff7abcdba5891cCAS | 16790614PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=b712c75a9f256db143e34f2404f5c739CAS | 16500323PubMed |

Sasson, R., Rimon, E., Dantes, A., Cohen, T., Shinder, V., Land-Bracha, A., and Amsterdam, A. (2004). Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases. Mol. Hum. Reprod. 10, 299–311.
Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1aqu7k%3D&md5=0f7973121e357464cc8c265838f401f5CAS | 15026540PubMed |

Sato, A., Otsu, E., Negishi, H., Utsunomiya, T., and Arima, T. (2007). Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 22, 26–35.
Aberrant DNA methylation of imprinted loci in superovulated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb%2FI&md5=bbd85e4bb1f2e43c4b2b51d3dd0e7deaCAS | 16923747PubMed |

Selesniemi, K., Lee, H. J., Muhlhauser, A., and Tilly, J. L. (2011). Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA 108, 12 319–12 324.
Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFagtbc%3D&md5=356623f3e0937e4637758558cf978420CAS |

Sha, W., Xu, B. Z., Li, M., Liu, D., Feng, H. L., and Sun, Q. Y. (2010). Effect of gonadotropins on oocyte maturation in vitro: an animal model. Fertil. Steril. 93, 1650–1661.
Effect of gonadotropins on oocyte maturation in vitro: an animal model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslyjurg%3D&md5=b490fef9ceb2eb4c0fa53967ef20bc60CAS | 19361797PubMed |

Spikings, E. C., Alderson, J., and St John, J. C. (2006). Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Hum. Reprod. Update 12, 401–415.
Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Wkur8%3D&md5=9fe19113fa72f844de3e758b33600548CAS | 16581809PubMed |

Spikings, E. C., Alderson, J., and St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtLs%3D&md5=1e3845aa557f33741af8a3c7ebb82c13CAS | 17035641PubMed |

St John, J. C. (2002). Ooplasm donation in humans: the need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer. Hum. Reprod. 17, 1954–1958.
Ooplasm donation in humans: the need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer.Crossref | GoogleScholarGoogle Scholar | 12151420PubMed |

Steuerwald, N., Barritt, J. A., Adler, R., Malter, H., Schimmel, T., Cohen, J., and Brenner, C. A. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209–215.
Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1OitLs%3D&md5=b4953d5e434108da1960f504c1603049CAS | 11014500PubMed |

Stojkovic, M., Motlik, J., Kölle, S., Zakhartchenko, V., Alberio, R., Sinowatz, F., and Wolf, E. (1999). Cell-cycle control and oocyte maturation: review of literature. Reprod. Domest. Anim. 34, 335–342.
Cell-cycle control and oocyte maturation: review of literature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Kmsrg%3D&md5=c479a98338a75a245174704dd763851fCAS |

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Goncalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=6d2ac9c4e7dc9eb10db34f96f2204365CAS | 11207207PubMed |

Takahashi, T., Igarashi, H., Kawagoe, J., Amita, M., Hara, S., and Kurachi, H. (2009). Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol. Reprod. 80, 493–502.
Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtLk%3D&md5=179822c62b7552533e65464fff712cc4CAS | 19038861PubMed |

Thouas, G. A., Trounson, A. O., and Jones, G. M. (2006). Developmental effects of sublethal mitochondrial injury in mouse oocytes. Biol. Reprod. 74, 969–977.
Developmental effects of sublethal mitochondrial injury in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2ju7w%3D&md5=6fa7768b7f2201e72d7e1add04f561c9CAS | 16452460PubMed |

Torner, H., Brussow, K. P., Alm, H., Ratky, J., Pohland, R., Tuchscherer, A., and Kanitz, W. (2004). Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology 61, 1675–1689.
Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWnu70%3D&md5=e309475921fb21435ddaf80ef277017fCAS | 15019463PubMed |

Van Blerkom, J. (1991). Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl Acad. Sci. USA 88, 5031–5035.
Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ntFehtw%3D%3D&md5=ca263c89d6f18bd95a789a6ffb6d9a7bCAS | 2052585PubMed |

Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–280.
Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitL0%3D&md5=17ecfc0d2ace51674b3b4b2b1b31d050CAS | 15333778PubMed |

Van Blerkom, J., and Davis, P. (2001). Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro. Hum. Reprod. 16, 757–764.
Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7ptVWlsQ%3D%3D&md5=a29c113b02de6960f411e2e93b6b1d6aCAS | 11278229PubMed |

Van Blerkom, J., and Davis, P. (2007). Mitochondrial signaling and fertilization. Mol. Hum. Reprod. 13, 759–770.
Mitochondrial signaling and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqtr3O&md5=06c5b4709c665b08682e4c73e34a2e55CAS | 17893093PubMed |

Van Blerkom, J., Davis, P., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
| 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=da91355e20abcf4da594e929c7419fa3CAS | 7769073PubMed |

Van Blerkom, J., Davis, P., Mathwig, V., and Alexander, S. (2002). Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17, 393–406.
Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 11821285PubMed |

Wilding, M., Dale, B., Marino, M., Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L., and Placido, G. D. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitlCktw%3D%3D&md5=06de26c3852ccb60655e91a16310184fCAS | 11331637PubMed |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=b593d4213b1b345a7f7ea7a612d0d495CAS | 9619561PubMed |

Yin, H., Duffy, D. M., and Gosden, R. G. (2006). Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro. Reprod. Biol. Endocrinol. 4, 14.
Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 16595009PubMed |

Yu, Y., Dumollard, R., Rossbach, A., Lai, F. A., and Swann, K. (2010). Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol. 224, 672–680.
Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWntLo%3D&md5=c7e96b40e0c071c85e1c337000746281CAS | 20578238PubMed |

Yu, T., Jhun, B. S., and Yoon, Y. (2011). High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid. Redox Signal. 14, 425–437.
High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SisQ%3D%3D&md5=5186aeb77777f4e5d7edbd25cc01c5baCAS | 20518702PubMed |

Zeng, H., Ren, Z., Yeung, W. S. B., Shu, Y., Xu, Y., Zhuang, G., and Liang, X. (2007). Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum. Reprod. 22, 1681–1686.
Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ejtL0%3D&md5=e1d2c212e68911a61961058d8d9dfa24CAS | 17449512PubMed |

Zeng, H., Yeung, W. S. B., Cheung, M. P. L., Ho, P. C., Lee, C. K. F., Zhuang, G., Liang, X., and O, W. S. (2009). In vitro-matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution. Fertil. Steril. 91, 900–907.
In vitro-matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslWmsb4%3D&md5=283cb3bf4efa8ad3afe41cfac16023c0CAS | 18321496PubMed |

Zhang, X., Wu, X. Q., Lu, S., and Guo, Y. L. (2006). Ma X. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 16, 841–850.
Ma X. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOmu7fF&md5=2ab6941f9a7e79272a9052f7c146206bCAS | 16983401PubMed |