Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Antenatal glucocorticoids reduce growth in appropriately grown and growth-restricted ovine fetuses in a sex-specific manner

Suzanne L. Miller A B C , Amy E. Sutherland A , Veena G. Supramaniam B , David W. Walker A B , Graham Jenkin A B and Euan M. Wallace A B
+ Author Affiliations
- Author Affiliations

A The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Vic. 3168, Australia.

B Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: graham.jenkin@monash.edu

Reproduction, Fertility and Development 24(5) 753-758 https://doi.org/10.1071/RD11143
Submitted: 30 May 2011  Accepted: 26 July 2011   Published: 6 January 2012

Abstract

Antenatal glucocorticoids are administered to mature the fetal lungs before preterm birth. Glucocorticoids also have non-pulmonary effects, including reducing fetal body and brain growth. The present study examined whether glucocorticoid administration has a sex-specific effect on growth in appropriately grown (control) and intrauterine growth-restricted (IUGR) fetal sheep. IUGR was induced at 0.7 gestation in fetal sheep by single umbilical artery ligation. On Days 5 and 6 after surgery, IUGR or control fetuses were exposed to the synthetic glucocorticoid betamethasone (BM; 11.4 mg) or saline via intramuscular maternal administration. On Day 7, a postmortem was conducted to determine fetal sex and weight. Compared with control fetuses, the birthweight of male and female IUGR fetuses was significantly reduced (by 18.5 ± 4.4% (P = 0.002) and 21.7 ± 6.0% (P = 0.001), respectively). Maternal administration of BM significantly reduced bodyweight in both control and IUGR fetuses (by 11.3 ± 2.8% and 20.5 ± 3.6% in control male and female fetuses, respectively; and by 22.9 ± 3.1% and 38.3 ± 3.4% in IUGR male and female fetuses, respectively; P < 0.001 for all, versus control + saline) fetuses. In control and IUGR animals the degree of growth restriction was greater in females than males (P < 0.05) following administration of BM. These data suggest that antenatal glucocorticoids reduce fetal growth in a sex-specific manner, with females more growth restricted than males.

Additional keywords: betamethasone, fetal growth, intrauterine growth restriction.


References

Back, S. A., Riddle, A., and Hohimer, A. R. (2006). Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury. J. Child. Neurol. 21, 582–589.
Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury.Crossref | GoogleScholarGoogle Scholar | 16970848PubMed |

Clarke, C. A., and Mittwoch, U. (1995). Changes in the male to female ratio at different stages of life. Br. J. Obstet. Gynaecol. 102, 677–679.
Changes in the male to female ratio at different stages of life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FjtVGgug%3D%3D&md5=c7bc20b5ffd4344d8da757d0bc6a71f6CAS | 7547755PubMed |

Clifton, V. L. (2005). Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth. Cell Tissue Res. 322, 63–71.
Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmu7zF&md5=579bd346ff7cd99caa455b6744f8d659CAS | 16052336PubMed |

Clifton, V. L. (2010). Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31, S33–S39.
Review: sex and the human placenta: mediating differential strategies of fetal growth and survival.Crossref | GoogleScholarGoogle Scholar | 20004469PubMed |

Crowther, C. A., Haslam, R. R., Hiller, J. E., Doyle, L. W., and Robinson, J. S. (2006). Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial. Lancet 367, 1913–1919.
Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFCrsLc%3D&md5=ba3cb3c7a048d3cc0f6c2860daf68fcfCAS | 16765760PubMed |

Derks, J. B., Giussani, D. A., Jenkins, S. L., Wentworth, R. A., Visser, G. H., Padbury, J. F., and Nathanielsz, P. W. (1997). A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J. Physiol. 499, 217–226.
| 1:CAS:528:DyaK2sXhvFemsrs%3D&md5=a0a5d5a01f34b4f1582279b495e93a32CAS | 9061651PubMed |

Engel, P. J., Smith, R., Brinsmead, M. W., Bowe, S. J., and Clifton, V. L. (2008). Male sex and pre-existing diabetes are independent risk factors for stillbirth. Aust. N. Z. J. Obstet. Gynaecol. 48, 375–383.
Male sex and pre-existing diabetes are independent risk factors for stillbirth.Crossref | GoogleScholarGoogle Scholar | 18837843PubMed |

Flecknoe, S. J., Wallace, M. J., Cock, M. L., Harding, R., and Hooper, S. B. (2003). Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L664–L670.
| 1:CAS:528:DC%2BD3sXnsVGls70%3D&md5=aed76ddff2e428787ebc5c4ea42fb2a2CAS | 12794005PubMed |

Fowden, A. L., and Forhead, A. J. (2009). Endocrine regulation of feto-placental growth. Horm. Res. 72, 257–265.
Endocrine regulation of feto-placental growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12hurjJ&md5=2cf627bfb7c2e89e8ba8b6d3149e66f6CAS | 19844111PubMed |

French, N. P., Hagan, R., Evans, S. F., Godfrey, M., and Newnham, J. P. (1999). Repeated antenatal corticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol. 180, 114–121.
Repeated antenatal corticosteroids: size at birth and subsequent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1ajtrc%3D&md5=839398824a2ec8c1fddb424328cc2795CAS | 9914589PubMed |

Huang, W. L., Beazley, L. D., Quinlivan, J. A., Evans, S. F., Newnham, J. P., and Dunlop, S. A. (1999). Effect of corticosteroids on brain growth in fetal sheep. Obstet. Gynecol. 94, 213–218.
Effect of corticosteroids on brain growth in fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1SnsL0%3D&md5=378d6a0785b7882ebce8e5a536389c9eCAS | 10432130PubMed |

Jensen, E. C., Rochette, M., Bennet, L., Wood, C. E., Gunn, A. J., and Keller-Wood, M. (2010). Physiological changes in maternal cortisol do not alter expression of growth-related genes in the ovine placenta. Placenta 31, 1064–1069.
Physiological changes in maternal cortisol do not alter expression of growth-related genes in the ovine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyhsLvP&md5=4137c39b6d5d7f3b806b5ed528954f5aCAS | 20951429PubMed |

Ma, X. H., Wu, W. X., and Nathanielsz, P. W. (2003). Gestation-related and betamethasone-induced changes in 11beta-hydroxysteroid dehydrogenase types 1 and 2 in the baboon placenta. Am. J. Obstet. Gynecol. 188, 13–21.
Gestation-related and betamethasone-induced changes in 11beta-hydroxysteroid dehydrogenase types 1 and 2 in the baboon placenta.Crossref | GoogleScholarGoogle Scholar | 12548190PubMed |

McLaughlin, K. J., Crowther, C. A., Walker, N., and Harding, J. E. (2003). Effects of a single course of corticosteroids given more than 7 days before birth: a systematic review. Aust. N. Z. J. Obstet. Gynaecol. 43, 101–106.
Effects of a single course of corticosteroids given more than 7 days before birth: a systematic review.Crossref | GoogleScholarGoogle Scholar | 14712961PubMed |

Miller, S. L., Chai, M., Loose, J., Castillo-Melendez, M., Walker, D. W., Jenkin, G., and Wallace, E. M. (2007). The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology 148, 1288–1295.
The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWnsbo%3D&md5=7345c18445f42427a90c5a41602327f3CAS | 17158204PubMed |

Miller, S. L., Supramaniam, V. G., Jenkin, G., Walker, D. W., and Wallace, E. M. (2009). Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am. J. Obstet. Gynecol. 201, e611–e618.

Milley, J. R. (1995). Effects of increased cortisol concentration on ovine fetal leucine kinetics and protein metabolism. Am. J. Physiol. 268, E1114–E1122.
| 1:CAS:528:DyaK2MXmvVGks7o%3D&md5=9903c6cc491a0e2bbddc41fddfc09579CAS | 7611386PubMed |

Moss, T. J., Harding, R., and Newnham, J. P. (2002). Lung function, arterial pressure and growth in sheep during early postnatal life following single and repeated prenatal corticosteroid treatments. Early Hum. Dev. 66, 11–24.
Lung function, arterial pressure and growth in sheep during early postnatal life following single and repeated prenatal corticosteroid treatments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKmu7g%3D&md5=9c8a91ae08530c49750772859e482145CAS | 11834344PubMed |

Moss, T. J., Doherty, D. A., Nitsos, I., Sloboda, D. M., Harding, R., and Newnham, J. P. (2005). Effects into adulthood of single or repeated antenatal corticosteroids in sheep. Am. J. Obstet. Gynecol. 192, 146–152.
Effects into adulthood of single or repeated antenatal corticosteroids in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslCmsw%3D%3D&md5=dd3c2c7d2c048e66946f8558a6e6b9c2CAS | 15672017PubMed |

Murphy, V. E., Gibson, P. G., Giles, W. B., Zakar, T., Smith, R., Bisits, A. M., Kessell, C. G., and Clifton, V. L. (2003). Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med. 168, 1317–1323.
Maternal asthma is associated with reduced female fetal growth.Crossref | GoogleScholarGoogle Scholar | 14500261PubMed |

Murphy, V. E., Smith, R., Giles, W. B., and Clifton, V. L. (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr. Rev. 27, 141–169.
Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus.Crossref | GoogleScholarGoogle Scholar | 16434511PubMed |

Naeye, R. L., Burt, L. S., Wright, D. L., Blanc, W. A., and Tatter, D. (1971). Neonatal mortality, the male disadvantage. Pediatrics 48, 902–906.
| 1:STN:280:DyaE38%2FmvVSgsw%3D%3D&md5=b48d5d5b5d9bbb41a2d58234a0f17b6bCAS | 5129451PubMed |

Resnik, R. (2002). Intrauterine growth restriction. Obstet. Gynecol. 99, 490–496.
Intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 11864679PubMed |

Robertson, M. C., Murila, F., Tong, S., Baker, L. S., Yu, V. Y., and Wallace, E. M. (2009). Predicting perinatal outcome through changes in umbilical artery Doppler studies after antenatal corticosteroids in the growth-restricted fetus. Obstet. Gynecol. 113, 636–640.
| 19300328PubMed |

Scheepens, A., van de Waarenburg, M., van den Hove, D., and Blanco, C. E. (2003). A single course of prenatal betamethasone in the rat alters postnatal brain cell proliferation but not apoptosis. J. Physiol. 552, 163–175.
A single course of prenatal betamethasone in the rat alters postnatal brain cell proliferation but not apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCnsr0%3D&md5=bfff42a12e6d51f14745ff3afea2826eCAS | 12909684PubMed |

Schwab, M., Roedel, M., Anwar, M. A., Muller, T., Schubert, H., Buchwalder, L. F., Walter, B., and Nathalielsz, W. (2000). Effects of betamethasone administration to the fetal sheep in late gestation on fetal cerebral blood flow. J. Physiol. 528, 619–632.
Effects of betamethasone administration to the fetal sheep in late gestation on fetal cerebral blood flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1GhsL8%3D&md5=386c480e8a9abd3044e8ed82a0c346b0CAS | 11060135PubMed |

Supramaniam, V. G., Jenkin, G., Loose, J., Wallace, E. M., and Miller, S. L. (2006). Chronic fetal hypoxia increases activin A concentrations in the late-pregnant sheep. Br. J. Obstet. Gynaecol. 113, 102–109.
Chronic fetal hypoxia increases activin A concentrations in the late-pregnant sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1yktQ%3D%3D&md5=3e6002597a1c736dce0766cdf44c236dCAS |

Verhaeghe, J., Vanstapel, F., Van Bree, R., Van Herck, E., and Coopmans, W. (2007). Transient catabolic state with reduced IGF-I after antenatal glucocorticoids. Pediatr. Res. 62, 295–300.
Transient catabolic state with reduced IGF-I after antenatal glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVGnur0%3D&md5=3541ca94e13a380e34c05c37bd2ae051CAS | 17622956PubMed |

Wapner, R. J., Sorokin, Y., Mele, L., Johnson, F., Dudley, D. J., Spong, C. Y., Peaceman, A. M., Leveno, K. J., Malone, F., Caritis, S. N., Mercer, B., Harper, M., Rouse, D. J., Thorp, J. M., Ramin, S., Carpenter, M. W., and Gabbe, S. G. (2007). Long-term outcomes after repeat doses of antenatal corticosteroids. N. Engl. J. Med. 357, 1190–1198.
Long-term outcomes after repeat doses of antenatal corticosteroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOhtLnJ&md5=d037a4b8ed0de05fef60bc98266afa49CAS | 17881751PubMed |

Zisk, J. L., Genen, L. H., Kirkby, S., Webb, D., Greenspan, J., and Dysart, K. (2011). Do premature female infants really do better than their male counterparts? Am. J. Perinatol. 28, 241–246.
Do premature female infants really do better than their male counterparts?Crossref | GoogleScholarGoogle Scholar | 21046537PubMed |