Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Relationship between the timing of prostaglandin-induced luteolysis and effects on the conceptus during early pregnancy in mares

Keith J. Betteridge A C , Rudolf O. Waelchli A , Heather L. Christie A , James I. Raeside A , Bette A. Quinn B and M. Anthony Hayes B
+ Author Affiliations
- Author Affiliations

A Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

B Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

C Corresponding author. Email: kbetter@uoguelph.ca

Reproduction, Fertility and Development 24(3) 411-424 https://doi.org/10.1071/RD11132
Submitted: 19 May 2011  Accepted: 12 July 2011   Published: 4 November 2011

Abstract

To advance the understanding of early pregnancy and pregnancy failure in horses, this study determined how luteolysis induced by cloprostenol (an analogue of prostaglandin F2α) affects conceptus development. Mares were injected on Days 12, 14, 16 or 18 of pregnancy with either cloprostenol (treatment groups, total n = 83 pregnancies) or saline (controls, n = 81), and growth of the conceptuses was monitored and compared by daily ultrasonography until they were collected transcervically on Days 15–22, 1–4 days after the injections. The comparisons were extended in the recovered conceptuses by counting somites, measuring the volume and osmolality of yolk-sac fluid and its concentrations of proteins, estrone sulfate and progesterone, and by assessing the morphology of the capsule and vascular system. When luteolysis was initiated on or before Day 16, most pregnancies survived until the time of collection and the conceptuses in respective treated and control groups on Days 15–20 were very similar except for some effects of treatment on the capsule and vascular development. In contrast, after luteolysis was initiated on Day 18, abortion often ensued within 3 days and most conceptuses collected had degenerated, therein constituting a predictable system in which to study the pathogenesis of a particular cause of pregnancy failure.

Additional keywords: embryonic capsule, embryonic loss, embryogenesis, yolk sac.


References

Acker, D. A., Curran, S., Bersu, E. T., and Ginther, O. J. (2001). Morphologic stages of the equine embryo proper on days 17 to 40 after ovulation. Am. J. Vet. Res. 62, 1358–1364.
Morphologic stages of the equine embryo proper on days 17 to 40 after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mrht1Citg%3D%3D&md5=e7a21e5413e53c90e3ebb5658d79c41aCAS | 11560260PubMed |

Allen, W. R. (2001). Luteal deficiency and embryo mortality in the mare. Reprod. Domest. Anim. 36, 121–131.
| 1:STN:280:DC%2BD3Mrgslarug%3D%3D&md5=6fcdd1a5981a78140c5a5f42ed3db4c1CAS | 11555357PubMed |

Allen, W. R., and Wilsher, S. (2009). A review of implantation and early placentation in the mare. Placenta 30, 1005–1015.
A review of implantation and early placentation in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGls7fI&md5=96fff3820034f3e69d7cc5cc055371e6CAS | 19850339PubMed |

Arar, S., Chan, K. H., Quinn, B. A., Waelchli, R. O., Hayes, M. A., Betteridge, K. J., and Monteiro, M. A. (2007). Desialylation of core type 1 O-glycan in the equine embryonic capsule coincides with immobilization of the conceptus in the uterus. Carbohydr. Res. 342, 1110–1115.
Desialylation of core type 1 O-glycan in the equine embryonic capsule coincides with immobilization of the conceptus in the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktF2mtL8%3D&md5=60f1cf07adfd9c8e542e16a11d99f51fCAS | 17335787PubMed |

Bazer, F. W., and Slayden, O. D. (2008). Progesterone-induced gene expression in uterine epithelia: a myth perpetuated by conventional wisdom. Biol. Reprod. 79, 1008–1009.
Progesterone-induced gene expression in uterine epithelia: a myth perpetuated by conventional wisdom.Crossref | GoogleScholarGoogle Scholar | 18953018PubMed |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt74%3D&md5=0dddbbee57332fc3828ef890b3b5fea6CAS | 19502456PubMed |

Betteridge, K. J. (2007). Equine embryology: an inventory of unanswered questions. Theriogenology 68, S9–S21.
Equine embryology: an inventory of unanswered questions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiurc%3D&md5=411969f9da90e6428321b7d63509e11dCAS | 17532037PubMed |

Betteridge, K. J. ( 2011). Embryo morphology, growth, and development. In ‘Equine Reproduction’. 2nd edn. (Eds A. O. McKinnon, E. L. Squires, W. E. Vaala and D. D. Varner.) pp. 2167–2186. (Wiley-Blackwell: Oxford.)

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Bériault, R. (1982). Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 1:STN:280:DyaL3s%2FjtVGnsg%3D%3D&md5=a76a31c3e7989ee066694ce4964527b2CAS | 7130052PubMed |

Betteridge, K. J., Waelchli, R. O., Christie, H. L., Raeside, J. I., Quinn, B. A., and Hayes, M. A. (2006). Effects of luteolysis on conceptus development during the second and third weeks of pregnancy in the mare. Anim. Reprod. Sci. 94, 383–386.
Effects of luteolysis on conceptus development during the second and third weeks of pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J., Waelchli, R. O., Christie, H. L., Raeside, J. I., Quinn, B. A., and Hayes, M. A. (2010). Relationship between the timing of prostaglandin-induced luteolysis and effects on the conceptus during early pregnancy in mares. Anim. Reprod. Sci. 121S, S231–S233.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=14300a26927bd8f0c2e23c515fdbb33cCAS | 942051PubMed |

Budik, S., Walter, I., Tschulenk, W., Helmreich, M., Deichsel, K., Pittner, F., and Aurich, C. (2008). Significance of aquaporins and sodium potassium ATPase subunits for expansion of the early equine conceptus. Reproduction 135, 497–508.
Significance of aquaporins and sodium potassium ATPase subunits for expansion of the early equine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOnu74%3D&md5=1fbc9d23c38ef00a726b2b4275cdfe55CAS | 18367510PubMed |

Chu, J. W., Sharom, F. J., Oriol, J. G., Betteridge, K. J., Cleaver, B. D., and Sharp, D. C. (1997). Biochemical changes in the equine capsule following prostaglandin-induced pregnancy failure. Mol. Reprod. Dev. 46, 286–295.
Biochemical changes in the equine capsule following prostaglandin-induced pregnancy failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFGktbk%3D&md5=fa61214cfa15de20a9f4648a479eced7CAS | 9041131PubMed |

Crews, L. J., Waelchli, R. O., Huang, C. X., Canny, M. J., McCully, M. E., and Betteridge, K. J. (2007). Electrolyte distribution and yolk sac morphology in frozen hydrated equine conceptuses during the second week of pregnancy. Reprod. Fertil. Dev. 19, 804–814.
Electrolyte distribution and yolk sac morphology in frozen hydrated equine conceptuses during the second week of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzP&md5=0658720de253fbebe535dc39c0b8a5c8CAS | 17897583PubMed |

Denker, H.-W., Betteridge, K. J., and Sirois, J. (1987). Shedding of the ‘capsule’ and proteinase activity in the horse embryo. J. Reprod. Fertil. Suppl. 35, 703.

Enders, A. C., and Liu, I. K. (1991). Lodgement of the equine blastocyst in the uterus from fixation through endometrial cup formation. J. Reprod. Fertil. Suppl. 44, 427–438.
| 1:STN:280:DyaK387nslamsg%3D%3D&md5=92800d1bebb0502f42b713369b1a3e98CAS | 1795287PubMed |

Errasti, A. E., del-Rey, G., Cesio, C. E., Souza, G., Nowak, W., Pelorosso, F. G., Daray, F. M., and Rothlin, R. P. (2009). Expression and functional evidence of the prostaglandin F2α receptor mediating contraction in human umbilical vein. Eur. J. Pharmacol. 610, 68–74.
Expression and functional evidence of the prostaglandin F2α receptor mediating contraction in human umbilical vein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2is7c%3D&md5=c8717c7e921b118d824322db0a876472CAS | 19289115PubMed |

Gerstenberg, C., Allen, W. R., and Stewart, F. (1999). Factors controlling epidermal growth factor (EGF) gene expression in the endometrium of the mare. Mol. Reprod. Dev. 53, 255–265.
Factors controlling epidermal growth factor (EGF) gene expression in the endometrium of the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFGhtLc%3D&md5=e0a7a517049ad59107b75b35de4c2453CAS | 10369386PubMed |

Ginther, O. J. (1985). Embryonic loss in mares: nature of loss after experimental induction by ovariectomy or prostaglandin F2α. Theriogenology 24, 87–98.
Embryonic loss in mares: nature of loss after experimental induction by ovariectomy or prostaglandin F2α.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhug%3D%3D&md5=f15db148bc5dea05cb88887be50e769fCAS | 16726061PubMed |

Ginther, O. J. ( 1986). ‘Ultrasonic Imaging and Reproductive Events in the Mare.’ (Equiservices: Cross Plains, WI.)

Haldiman, J. T. (1981). Bovine somite development and vertebral anlagen establishment. Anat. Histol. Embryol. 10, 289–309.
Bovine somite development and vertebral anlagen establishment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387otVSltQ%3D%3D&md5=2095ade3292f6e37893be3284ab00b4bCAS | 6462066PubMed |

Hayes, M. A., Quinn, B. A., Keirstead, N. D., Katavolos, P., Waelchli, R. O., and Betteridge, K. J. (2008). Proteins associated with the early intrauterine equine conceptus. Reprod. Domest. Anim. 43, 232–237.
Proteins associated with the early intrauterine equine conceptus.Crossref | GoogleScholarGoogle Scholar | 18638129PubMed |

Irvine, C. H. G., Sutton, P., Turner, J. E., and Merrick, P. E. (1990). Changes in plasma progesterone concentrations from Days 14–42 of gestation in mares maintaining or losing pregnancy. Equine Vet. J. 22, 104–106.
Changes in plasma progesterone concentrations from Days 14–42 of gestation in mares maintaining or losing pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3gtV2kug%3D%3D&md5=cb7241e4aebde36926230b1292428d9cCAS |

Kastelic, J. P., Adams, G. P., and Ginther, O. J. (1987). Role of progesterone in mobility, fixation, orientation, and survival of the equine embryonic vesicle. Theriogenology 27, 655–663.
Role of progesterone in mobility, fixation, orientation, and survival of the equine embryonic vesicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslWjsrY%3D&md5=4edcab4fc9504572980ea2a9aab7baf5CAS | 16726270PubMed |

Lillie, B. N., Traficante, E., Walker, M. E., Quinn, B. A., Arroyo, L., Waelchli, R. O., Betteridge, K. J., and Hayes, M. A. (2010). Endometrial expression of capsule-associated proteins and cytokines during the third week of pregnancy in mares. Anim. Reprod. Sci. 121S, S254–S256.

Morris, L. H., and Allen, W. R. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34, 51–60.
Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fptlequg%3D%3D&md5=729a2ba23f76130347951ed75628b32fCAS | 11822372PubMed |

Oriol, J. G., Sharom, F. J., and Betteridge, K. J. (1993a). Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. J. Reprod. Fertil. 99, 653–664.
Developmentally regulated changes in the glycoproteins of the equine embryonic capsule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFentbc%3D&md5=4a1ff13a25e73f67d364ff45710891dcCAS | 8107051PubMed |

Oriol, J. G., Betteridge, K. J., Clarke, A. J., and Sharom, F. J. (1993b). Mucin-like glycoproteins in the equine embryonic capsule. Mol. Reprod. Dev. 34, 255–265.
Mucin-like glycoproteins in the equine embryonic capsule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGlsr8%3D&md5=c41d2b759c081c5164d9374673d0cbf5CAS | 8471247PubMed |

Quinn, B. A., Hayes, M. A., Waelchli, R. O., Kennedy, M. W., and Betteridge, K. J. (2007). Changes in major proteins in the embryonic capsule during immobilization (fixation) of the conceptus in the third week of pregnancy in the mare. Reproduction 134, 161–170.
Changes in major proteins in the embryonic capsule during immobilization (fixation) of the conceptus in the third week of pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGisL4%3D&md5=e62f3683c89ae60d4fe84db87d147ab3CAS | 17641098PubMed |

Raeside, J. I., Christie, H. L., Renaud, R. L., Waelchli, R. O., and Betteridge, K. J. (2004). Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid. Biol. Reprod. 71, 1120–1127.
Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7s%3D&md5=83d5a793e0484e2b6988c899068d0405CAS | 15163615PubMed |

Rambags, B. P. B., van Tol, H. T. A., van den Eng, M. M., Colenbrander, B., and Stout, T. A. E. (2008). Expression of progesterone and oestrogen receptors by early intrauterine equine conceptuses. Theriogenology 69, 366–375.
Expression of progesterone and oestrogen receptors by early intrauterine equine conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2hsA%3D%3D&md5=ea2b9c139eacac2acbcf61fe7f28a545CAS |

Ryan, P. L., King, G. J., and Raeside, J. I. (1990). Direct effect of cortisol on steroid production by granulose cells from PMSG-induced follicles of prepubertal gilts. Anim. Reprod. Sci. 23, 75–86.
Direct effect of cortisol on steroid production by granulose cells from PMSG-induced follicles of prepubertal gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFyquw%3D%3D&md5=fc63cae293f91552ec76b8a046c6b77aCAS |

Scholtz, E. L., Ball, B. A., Stanley, S. D., Moeller, B. C., Wirz, A. J., and Conley, A. J. (2010). 5α-Dihydroprogesterone is bioactive in the horse. Anim. Reprod. Sci. 121S, S229–S230.

Sharp, D. C., McDowell, K. J., Weithenauer, J., and Thatcher, W. W. (1989). The continuum of events leading to maternal recognition of pregnancy in mares. J. Reprod. Fertil. Suppl. 37, 101–107.
| 1:CAS:528:DyaL1MXitVKntbs%3D&md5=c79d6fae5675c79c64c63577ed6fbc78CAS | 2810225PubMed |

Sinowatz, F. ( 2009). Neurulation. In ‘Essentials of Domestic Animal Embryology’. (Eds P. Hyttel, F. Sinowatz and M. Vejlsted.) pp. 95–103. (Saunders Elsevier: Edinburgh.)

Stout, T. A. E., and Allen, W. R. (2002). Prostaglandin E2 and F2α production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction 123, 261–268.
Prostaglandin E2 and F production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChtr8%3D&md5=6605fefdbb01358e732dc2c819190361CAS |

Suire, S., Stewart, F., Beauchamp, J., and Kennedy, M. W. (2001). Uterocalin, a lipocalin provisioning the preattachment equine conceptus: fatty acid and retinol binding properties, and structural characterization. Biochem. J. 356, 369–376.
Uterocalin, a lipocalin provisioning the preattachment equine conceptus: fatty acid and retinol binding properties, and structural characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1altLY%3D&md5=a35fe210d38a6c4123e40cb3abb28f3aCAS | 11368763PubMed |

van Straaten, H. W. M., Peeters, M. C. E., Hekking, J. W. M., and van der Lende, T. (2000). Neurulation in the pig embryo. Anat. Embryol. (Berl.) 202, 75–84.
Neurulation in the pig embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2Fms1ansg%3D%3D&md5=1218694a759f0e1c9747df2a8cdcc32bCAS |

Waelchli, R. O., and Betteridge, K. J. (1996). Osmolality of equine blastocyst fluid from day 11 to day 25 of pregnancy. Reprod. Fertil. Dev. 8, 981–988.
Osmolality of equine blastocyst fluid from day 11 to day 25 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FltFaqtg%3D%3D&md5=6c6b65728f7680e5630db63816775c58CAS | 8896033PubMed |

Walter, I., Tschulenk, W., Budik, S., and Aurich, C. (2010). Transmission electron microscopy (TEM) of equine conceptuses at 14 and 16 days of gestation. Reprod. Fertil. Dev. 22, 405–416.
Transmission electron microscopy (TEM) of equine conceptuses at 14 and 16 days of gestation.Crossref | GoogleScholarGoogle Scholar | 20047726PubMed |

Wilsher, S., Clutton-Brock, A., and Allen, W. R. (2010). Successful transfer of day 10 horse embryos: influence of donor-recipient asynchrony on embryo development. Reproduction 139, 575–585.
Successful transfer of day 10 horse embryos: influence of donor-recipient asynchrony on embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2lsbY%3D&md5=54ed986f0a12f3afb843ba213070ccb7CAS | 19948839PubMed |