Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of histone hyperacetylation on the preimplantation development of male and female bovine embryos

Clara S. Oliveira A B , Naiara Z. Saraiva A , Marcela M. de Souza A , Tatiane A. D. Tetzner A , Marina R. de Lima A and Joaquim M. Garcia A
+ Author Affiliations
- Author Affiliations

A Department of Preventive Veterinary Medicine and Animal Reproduction, Faculdade de Ciências Agrárias e Veterinária–Sao Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil.

B Corresponding author. Email: claraslade@gmail.com

Reproduction, Fertility and Development 22(6) 1041-1048 https://doi.org/10.1071/RD09238
Submitted: 15 September 2009  Accepted: 5 February 2010   Published: 1 July 2010

Abstract

Trichostatin A (TSA) induces histone hyperacetylation by inhibiting histone deacetylases and consequently increasing gene expression. The hypothesis was that TSA supplementation during the in vitro culture (IVC) of bovine embryos would increase the blastocyst rate, particularly in low-quality and female embryos. Oocytes were fertilised separately with X and Y spermatozoa and, 70 h after IVF, the IVC medium was supplemented with 5 nM and 15 nM TSA for 48 or 144 h. Incubation of female embryos with 5 nM and 15 nM TSA resulted in similar increases in acetylated histone H3K9 levels. However, to see comparable effects on acetylated histone H3K9 levels in male embryos, the culture medium needed to be supplemented with 15 nM TSA (as opposed to 5 nM TSA for female embryos). Treatment of male and female embryos with 5 nM TSA for 48 h or female embryos with 5 nM for 144 h had no effect on blastocyst rates, although 15 nM TSA compromised embryonic development. The terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) assay revealed increased apoptosis in female embryos treated with 5 nM TSA for 144 h, as well as in male and female embryos treated with 15 nM TSA for 48 h, but this increase in apoptosis was not observed in low-quality embryos. The results of the present study suggest that TSA treatment promotes histone hyperacetylation, but has no beneficial effects on the in vitro production of male and female bovine embryos during preimplantation development.

Additional keywords: epigenetics, histone deacetylase inhibition, histone H3 lys9 acetylation, immunocytochemistry, trichostatin A, TUNEL assay.


Acknowledgements

The authors thank Roberta Vantini for technical assistance in the IVF laboratory. This study was supported by the Foundation for Research Support of the State of Sao Paulo (FAPESP).


References

Antunes, G. , Chaveiro, A. , Santos, P. , Marques, A. , Jin, H. S. , and da Silva, F. M. (2010). Influence of apoptosis in bovine embryo’s development. Reprod. Domest. Anim. 45, 26–32.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Aoki, F. , Worrad, D. M. , and Schultz, R. M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Avery, B. , Jorgensen, C. B. , Madison, V. , and Greve, T. (1992). Morphological development and sex of bovine in vitro-fertilized embryos. Mol. Reprod. Dev. 32, 265–270.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Badr, H. , Bongioni, G. , Abdoon, A. S. S. , Kandil, O. , and Puglisi, R. (2007). Gene expression in the in vitro-produced preimplantation bovine embryos. Zygote 15, 355–367.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bertolini, M. , Beam, S. W. , Shim, H. , Bertolini, L. R. , Moyer, A. L. , Famula, T. R. , and Anderson, G. B. (2002). Growth, development, and gene expression by in vivo- and in vitro-produced Day 7 and 16 bovine embryos. Mol. Reprod. Dev. 63, 318–328.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Betts, D. H. , and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Brackett, B. G. , Bousquet, D. , Boice, M. L. , Donawick, W. J. , Evans, J. F. , and Dressel, M. A. (1982). Normal development following in vitro fertilization in the cow. Biol. Reprod. 27, 147–158.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Dai, B. , and Rasmussen, T. P. (2007). Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells 25, 2567–2574.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Dean, W. , Santos, F. , Stojkovic, M. , Zakhartchenko, V. , Walter, J. , Wolf, E. , and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13 734–13 738.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ding, X. , Wang, Y. , Zhang, D. , Wang, Y. , Guo, Z. , and Zhang, Y. (2008). Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology 70, 622–630.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Edwards, J. L. , King, W. A. , Kawarsky, S. J. , and Ealy, A. D. (2001). Responsiveness of early embryos to environmental insults: potential protective roles of HSP70 and glutathione. Theriogenology 55, 209–223.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Enright, B. P. , Jeong, X. Y. , Yang, X. , and Tian, X. C. (2003a). Epigenetic characteristics of bovine donor cells for nuclear transfer: levels of histone acetylation. Biol. Reprod. 69, 1525–1530.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Enright, B. P. , Kubota, C. , Yang, X. , and Tian, X. C. (2003b). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biol. Reprod. 69, 896–901.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fouladi-Nashta, A. A. , Alberio, R. , Kafi, M. , Nicholas, B. , Campbell, K. H. , and Webb, R. (2005). Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod. Biomed. Online 10, 497–502.
PubMed |  CAS |

Hamano, K. (2007). Sex preselection in bovine by separation of X- and Y-chromosome bearing spermatozoa. J. Reprod. Dev. 53, 27–38.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Henery, C. C. , Miranda, M. , Wiekowski, M. , Wilmut, I. , and DePamphilis, M. L. (1995). Repression of gene expression at the beginning of mouse development. Dev. Biol. 169, 448–460.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Iager, A. E. , Ragina, N. P. , Ross, P. J. , Beyhan, Z. , Cunniff, K. , Rodriguez, R. M. , and Cibelli, J. B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 10, 371–380.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Johnstone, R. W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Jousan, F. D. , De Castro e Paula, L. A. , Brad, A. M. , Roth, Z. , and Hansen, P. J. (2008). Relationship between Group II caspase activity of bovine preimplantation embryos and capacity for hatching. J. Reprod. Dev. 54, 217–220.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Koyama, Y. , Adachi, M. , Sekiya, M. , Takekewa, M. , and Imai, K. (2000). Histone deacetylase inhibitors suppress IL-2-mediated gene expression prior to induction of apoptosis. Blood 96, 1490–1495.
PubMed |  CAS |

Lonergan, P. (1994). Growth of preimplantation bovine embryos. Acta Vet. Scand. 35, 307–320.
PubMed |  CAS |

Lonergan, P. , Rizos, D. , Gutierrez-Adan, A. , Fair, T. , and Boland, M. P. (2003). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod. Domest. Anim. 38, 259–267.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ma, P. , and Schultz, R. M. (2008). Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev. Biol. 319, 110–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Maalouf, W. E. , Alberio, R. , and Campbell, K. H. S. (2008). Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3, 199–209.
PubMed |

Memili, E. , and First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8, 87–96.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nervi, C. , Borello, U. , Fazi, F. , Buffa, V. , Pelicci, P. G. , and Cossu, G. (2001). Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity. Cancer Res. 61, 1247–1249.
PubMed |  CAS |

Patterton, D. , and Wolffe, A. P. (1996). Developmental roles for chromatin and chromosomal structure. Dev. Biol. 173, 2–13.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Paula-Lopes, F. F. , and Hansen, P. J. (2002). Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock. Biochem. Biophys. Res. Commun. 295, 37–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rizos, D. , Lonergan, P. , Boland, M. P. , Arroyo-García, R. , Pintado, B. , de la Fuente, J. , and Gutiérrez-Adán, A. (2002). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol. Reprod. 66, 589–595.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schübeler, D. , MacAlpine, D. M. , Scalzo, D. , Wirbelauer, C. , and Kooperberg, C. , et al. (2004). The histone modification pattern of genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Seidel, G. E. , Schenk, J. L. , Herickhoff, L. A. , Doyle, S. P. , Brink, Z. , Green, R. D. , and Cran, D. G. (1999). Insemination of heifers with sexed sperm. Theriogenology 52, 1407–1420.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wee, G. , Shim, J. J. , Koo, D. B. , Chae, J. I. , and Lee, K. K. (2007). Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134, 781–787.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1996). Expression of the gap junction gene connexin43 (Cx43) in preimplantation bovine embryos derived in vitro or in vivo. J. Reprod. Fertil. 108, 17–24.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Lucas-Hahn, A. , Herrmann, D. , Lemme, E. , Korsawe, K. , and Niemann, H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod. 66, 127–134.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , Lucas-Hahn, A. , Lemme, E. , Korsawe, K. , and Niemann, H. (2004). Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome? Anim. Reprod. Sci. 82–83, 593–603.
Crossref | GoogleScholarGoogle Scholar |

Xu, K. P. , Yadav, B. R. , King, W. A. , and Betteridge, K. J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 249–252.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Smith, S. L. , Tian, X. C. , Lewin, H. A. , Renard, J. P. , and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zupkovitz, G. , Tischler, J. , Posch, M. , Sadzak, I. , and Ramsauer, K. , et al. (2006). Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol. 26, 7913–7928.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |