Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mammalian oocyte development: checkpoints for competence

Trudee Fair
+ Author Affiliations
- Author Affiliations

Veterinary Sciences Centre and Lyons Research Farm, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. Email: trudee.fair@ucd.ie

Reproduction, Fertility and Development 22(1) 13-20 https://doi.org/10.1071/RD09216
Published: 8 December 2009

Abstract

During the lifespan of the female, biochemical changes occur in the ovarian environment. These changes are brought about by numerous endogenous and exogenous factors, including husbandry practices, production demands and disease, and can have a profound effect on ovarian oocyte quality and subsequent embryo development. Despite many investigations, there is no consensus regarding the time or period of follicular oocyte development that is particularly sensitive to insult. Here, the key molecular and morphological events that occur during oocyte and follicle growth are reviewed, with a specific focus on identifying critical checkpoints in oocyte development. The secondary follicle stage appears to be a key phase in follicular oocyte development because major events such as activation of the oocyte transcriptome, sequestration of the zona pellucida, establishment of bidirectional communication between the granulosa cells and the oocyte and cortical granule synthesis occur during this period of development. Several months later, the periovulatory period is also characterised by the occurrence of critical events, including appropriate degradation or polyadenylation of mRNA transcripts, resumption of meiosis, spindle formation, chromosome alignment and segregation, and so should also be considered as a potential checkpoint of oocyte development.

Additional keywords: biomarkers, cattle, follicular oocyte growth, gene expression.


References

Al-Katanani, Y. M. , Paula-Lopes, F. F. , and Hansen, P. J. (2002). Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci. 85, 390–396.
PubMed |  CAS | Stouder C., Deutsch S., and Paoloni-Giacobino A. (2009). Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol., in press. doi:10.1016/J.REPROTOX.2009.06.009

Su, Y. Q. , Sugiura, K. , Wigglesworth, K. , O’Brien, M. J. , Affourtit, J. P. , Pangas, S. A. , Matzuk, M. , and Eppig, J. J. (2008). Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135, 111–121.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sun, Q. Y. , Liu, K. , and Kikuchi, K. (2008). Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol. Reprod. 79, 1014–1020.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suzuki, J. , Therrien, J. , Filion, F. , Lefebvre, R. , Goff, A. K. , and Smith, L. C. (2009). In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev. Biol. 9, 9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tesfaye, D. , Ghanem, N. , Carter, F. , Fair, T. , Sirard, M. A. , Hoelker, M. , Schellander, K. , and Lonergan, P. (2009). Gene expression profile of cumulus cells derived from cumulus–oocyte complexes matured either in vivo or in vitro. Reprod. Fertil. Dev. 21, 451–461.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tisdall, D. J. , Watanabe, K. , Hudson, N. L. , Smith, P. , and McNatty, K. P. (1995). FSH receptor gene expression during ovarian follicle development in sheep. J. Mol. Endocrinol. 15, 273–281.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Torres-Júnior, J. R. de S. , Pires, M. de F. A. , de Sa, W. F. , Ferreira, A. de M. , and Viana, J. H. M. , et al. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology 69, 155–166.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van Montfoort, A. P. , Geraedts, J. P. , Dumoulin, J. C. , Stassen, A. P. , Evers, J. L. , and Ayoubi, T. A. (2008). Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol. Hum. Reprod. 14, 157–168.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wathes, D. C. , Fenwick, M. , Cheng, Z. , Bourne, N. , Llewellyn, S. , Morris, D. G. , Kenny, D. , Murphy, J. , and Fitzpatrick, R. (2007). Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 68(Suppl. 1), S232–S241.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Webb, R. , Garnsworthy, P. C. , Gong, J. G. , and Armstrong, D. G. (2004). Control of follicular growth: local interactions and nutritional influences. J. Anim. Sci. 82, 63–74.


Wood, J. R. , Dumesic, D. A. , Abbott, D. H. , and Strauss, J. F. (2007). Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J. Clin. Endocrinol. Metab. 92, 705–713.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Xu, Z. , Garverick, H. A. , Smith, G. W. , Smith, M. F. , Hamilton, S. A. , and Younquist, R. S. (1995). Expression of follicle stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biol. Reprod. 53, 951–957.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zuccotti, M. , Merico, V. , Sacchi, L. , Bellone, M. , Brink, T. C. , Bellazzi, R. , Stefanelli, M. , Redi, C. A. , Garagna, S. , and Adjaye, J. (2008). Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Dev. Biol. 8, 97.
Crossref | GoogleScholarGoogle Scholar | PubMed |