Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Embryonic gene expression profiling using microarray analysis

Sadie L. Marjani A G , Daniel Le Bourhis B C , Xavier Vignon B , Yvan Heyman B , Robin E. Everts D F , Sandra L. Rodriguez-Zas D , Harris A. Lewin D , Jean-Paul Renard B , Xiangzhong Yang E and X. Cindy Tian E
+ Author Affiliations
- Author Affiliations

A Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.

B UMR Biologie du Developpement et Reproduction, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas, France.

C UNCEIA, Department of Research and Development, 13, rue Jouët, 94704 Maisons-Alfort, France.

D Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

E Center for Regenerative Biology and Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.

F Present address: SEQUENOM Inc., 3595 John Hopkins Court, San Diego, CA 92121, USA.

G Corresponding author. Email: sadie.marjani@yale.edu

Reproduction, Fertility and Development 21(1) 22-30 https://doi.org/10.1071/RD08217
Published: 9 December 2008

Abstract

Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.


Acknowledgements

The authors thank Mark G. Carter for his helpful comments.


References

Adjaye, J. (2005). Whole-genome approaches for large-scale gene identification and expression analysis in mammalian preimplantation embryos. Reprod. Fertil. Dev. 17, 37–45.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Cibelli J. B., Lanza R. P., Campbell K. H., and West M. D. (2002). ‘Principles of Cloning.’ (Academic Press: San Diego.)

Cloonan, N. , Forrest, A. R. , Kolle, G. , Gardiner, B. B. , and Faulkner, G. J. , et al. (2008). Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613–619.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Smith S. L., Everts R. E., Sung L. Y., Du F., Page R. L. et al. (2008). Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation, fertilization and culture. Mol. Reprod. Dev., in press.

Somers, J. , Smith, C. , Donnison, M. , Wells, D. N. , Henderson, H. , McLeay, L. , and Pfeffer, P. L. (2006). Gene expression profiling of individual bovine nuclear transfer blastocysts. Reproduction 131, 1073–1084.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suchyta, S. P. , Sipkovsky, S. , Kruska, R. , Jeffers, A. , and McNulty, A. , et al. (2003). Development and testing of a high-density cDNA microarray resource for cattle. Physiol. Genomics 15, 158–164.
PubMed |  CAS |

Tanaka, T. S. , and Ko, M. S. (2004). A global view of gene expression in the preimplantation mouse embryo: morula versus blastocyst. Eur. J. Obstet. Gynecol. Reprod. Biol. 115((Suppl. 1)), S85–S91.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanaka, T. S. , Jaradat, S. A. , Lim, M. K. , Kargul, G. J. , and Wang, X. , et al. (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl Acad. Sci. USA 97, 9127–9132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thibier, M. (2007). IETS data retrieval committee report 2006. Embryo Transfer Newsletter 25, 15–20.


Ushizawa, K. , Herath, C. B. , Kaneyama, K. , Shiojima, S. , and Hirasawa, A. , et al. (2004). cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period. Reprod. Biol. Endocrinol. 2, 77.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Gelder, R. N. , von Zastrow, M. E. , Yool, A. , Dement, W. C. , Barchas, J. D. , and Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, Q. T. , Piotrowska, K. , Ciemerych, M. A. , Milenkovic, L. , Scott, M. P. , Davis, R. W. , and Zernicka-Goetz, M. (2004). A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Warzych, E. , Wrenzycki, C. , Peippo, J. , and Lechniak, D. (2007). Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol. Reprod. Dev. 74, 280–289.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Whitworth, K. M. , Agca, C. , Kim, J.-G. , Patel, R. V. , and Springer, G. K. , et al. (2005). Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72, 1437–1451.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Winger, Q. A. , Hill, J. R. , Shin, T. , Watson, A. J. , Kraemer, D. C. , and Westhusin, M. E. (2000). Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol. Reprod. Dev. 56, 458–464.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , and Niemann, H. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online 7, 649–656.
PubMed |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1996). Expression of the gap junction gene connexin43 (Cx43) in preimplantation bovine embryos derived in vitro or in vivo. J. Reprod. Fertil. 108, 17–24.
PubMed |  CAS |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Wells, D. , Herrmann, D. , Miller, A. , Oliver, J. , Tervit, R. , and Niemann, H. (2001). Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol. Reprod. 65, 309–317.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , Lucas-Hahn, A. , Korsawe, K. , Lemme, E. , and Niemann, H. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 17, 23–35.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Smith, S. L. , Tian, X. C. , Lewin, H. A. , Renard, J. P. , and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yao, J. , Ren, X. , Ireland, J. J. , Coussens, P. M. , Smith, T. P. , and Smith, G. W. (2004). Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiol. Genomics 19, 84–92.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Young, L. E. , Sinclair, K. D. , and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhou, W. , Xiang, T. , Walker, S. , Farrar, V. , Hwang, E. , Findeisen, B. , Sadeghieh, S. , Arenivas, F. , Abruzzese, R. V. , and Polejaeva, I. (2008). Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol. Reprod. Dev. 75, 744–758.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |