Progesterone regulation of the endometrial WNT system in the ovine uterus
M. Carey Satterfield A , Gwonhwa Song A , Kanako Hayashi A B , Fuller W. Bazer A and Thomas E. Spencer A CA Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
B Present address: Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
C Corresponding author. Email: tspencer@tamu.edu
Reproduction, Fertility and Development 20(8) 935-946 https://doi.org/10.1071/RD08069
Submitted: 3 April 2008 Accepted: 28 July 2008 Published: 23 October 2008
Abstract
WNT signalling regulates cell proliferation, differentiation, polarity and organisation. The present study investigated the effects of progesterone (P4) on the endometrial WNT system in relation to blastocyst development and growth in sheep. Ewes received daily intramuscular injections of either corn oil (CO) vehicle or 25 mg P4 from 36 h after mating (Day 0) until hysterectomy on Day 9 or 12. Another group received P4 until Day 8 and 75 mg mifepristone (RU486) from Day 8 to Day 12. Early P4 treatment increased blastocyst growth on Days 9 and 12, whereas no blastocysts were recovered from P4 + RU486-treated ewes. Levels of WNT2 mRNA in the stroma and WNT11 and WNT7A mRNAs in the endometrial luminal epithelia (LE) were reduced in P4 + RU486-treated ewes on Day 9, whereas WNT11 mRNA was reduced in the endometria of both P4- and P4 + RU486-treated ewes on Day 12. On Day 12, WNT2 mRNA was increased in the stroma, WNT7A mRNA was increased in the LE and WNT5A mRNA was increased in the LE and stroma of P4 + RU486- compared with P4-treated ewes. DKK1 mRNA was absent in the endometrial stroma of P4 + RU486-treated ewes. Expression of transcription factor 7 like-2 (TCF7L2) was transiently increased in endometrial epithelia of P4-treated ewes on Day 9, but decreased in these ewes on Day 12. MSX1 mRNA was decreased by P4 treatment on Day 9 and levels of both MSX1 and MSX2 mRNA were higher in P4 + RU486-treated ewes on Day 12. Thus, P4 modulates the endometrial WNT system and elicits a transient decline in selected WNT pathways and signalling components, which is hypothesised to alter tight and adherens junctions, thereby stimulating blastocyst growth and development.
Additional keyword: endometrium.
Acknowledgements
This work was supported by the National Research Initiative Competitive Grant No. 2005–35203–16252 from the USDA Cooperative State Research, Education and Extension Service.
Bafico, A. , Gazit, A. , Pramila, T. , Finch, P. W. , Yaniv, A. , and Aaronson, S. A. (1999). Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274, 16 180–16 187.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Flechon, J. E. , Guillomot, M. , Charlier, M. , Flechon, B. , and Martal, J. (1986). Experimental studies on the elongation of the ewe blastocyst. Reprod. Nutr. Dev. 26, 1017–1024.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hayashi, K. , Burghardt, R. C. , Bazer, F. W. , and Spencer, T. E. (2007). WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development. Endocrinology 148, 3496–3506.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Heyman, Y. , Camous, S. , Fevre, J. , Meziou, W. , and Martal, J. (1984). Maintenance of the corpus luteum after uterine transfer of trophoblastic vesicles to cyclic cows and ewes. J. Reprod. Fertil. 70, 533–540.
| PubMed | CAS |
Huelsken, J. , and Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hussein, S. M. , Duff, E. K. , and Sirard, C. (2003). Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J. Biol. Chem. 278, 48 805–48 814.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Jamora, C. , DasGupta, R. , Kocieniewski, P. , and Fuchs, E. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317–322.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Karner, C. , Wharton, K. A. , and Carroll, T. J. (2006a). Apical–basal polarity, Wnt signaling and vertebrate organogenesis. Semin. Cell Dev. Biol. 17, 214–222.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Karner, C. , Wharton, K. A. , and Carroll, T. J. (2006b). Planar cell polarity and vertebrate organogenesis. Semin. Cell Dev. Biol. 17, 194–203.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kawano, Y. , and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kim, S. , Choi, Y. , Bazer, F. W. , and Spencer, T. E. (2003). Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1. Endocrinology 144, 5203–5214.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kuhl, M. , Sheldahl, L. C. , Park, M. , Miller, J. R. , and Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lee, R. S. , Wheeler, T. T. , and Peterson, A. J. (1998). Large-format, two-dimensional polyacrylamide gel electrophoresis of ovine periimplantation uterine luminal fluid proteins: identification of aldose reductase, cytoplasmic actin, and transferrin as conceptus-synthesized proteins. Biol. Reprod. 59, 743–752.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lessey, B. A. , Killam, A. P. , Metzger, D. A. , Haney, A. F. , Greene, G. L. , and McCarty, K. S. (1988). Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J. Clin. Endocrinol. Metab. 67, 334–340.
| PubMed | CAS |
Li, Q. , Wang, J. , Armant, D. R. , Bagchi, M. K. , and Bagchi, I. C. (2002). Calcitonin down-regulates E-cadherin expression in rodent uterine epithelium during implantation. J. Biol. Chem. 277, 46 447–46 455.
| PubMed | CAS |
Logan, C. Y. , and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Mankertz, J. , Hillenbrand, B. , Tavalali, S. , Huber, O. , Fromm, M. , and Schulzke, J. D. (2004). Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochem. Biophys. Res. Commun. 314, 1001–1007.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Miwa, N. , Furuse, M. , Tsukita, S. , Niikawa, N. , Nakamura, Y. , and Furukawa, Y. (2001). Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 12, 469–476.
| PubMed | CAS |
Mohamed, O. A. , Jonnaert, M. , Labelle-Dumais, C. , Kuroda, K. , Clarke, H. J. , and Dufort, D. (2005). Uterine Wnt/beta-catenin signaling is required for implantation. Proc. Natl Acad. Sci. USA 102, 8579–8584.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Nelson, W. J. , and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483–1487.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Nishina, H. , Wada, T. , and Katada, T. (2004). Physiological roles of SAPK/JNK signaling pathway. J. Biochem. 136, 123–126.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Nusse, R. (2001). Developmental biology. Making head or tail of Dickkopf. Nature 411, 255–256.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Oehler, M. K. , MacKenzie, I. Z. , Wallwiener, D. , Bicknell, R. , and Rees, M. C. (2002). Wnt-7a is upregulated by norethisterone in human endometrial epithelial cells: a possible mechanism by which progestogens reduce the risk of estrogen-induced endometrial neoplasia. Cancer Lett. 186, 75–81.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Orchard, M. D. , and Murphy, C. R. (2002). Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat. Acta Histochem. 104, 149–155.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pandur, P. , Lasche, M. , Eisenberg, L. M. , and Kuhl, M. (2002a). Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pandur, P. , Maurus, D. , and Kuhl, M. (2002b). Increasingly complex: new players enter the Wnt signaling network. Bioessays 24, 881–884.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Paria, B. C. , Zhao, X. , Das, S. K. , Dey, S. K. , and Yoshinaga, K. (1999). Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev. Biol. 208, 488–501.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pinson, K. I. , Brennan, J. , Monkley, S. , Avery, B. J. , and Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Robinson, G. W. , Hennighausen, L. , and Johnson, P. F. (2000). Side-branching in the mammary gland: the progesterone–Wnt connection. Genes Dev. 14, 889–894.
| PubMed | CAS |
Roose, J. , Huls, G. , van Beest, M. , Moerer, P. , van der Horn, K. , Goldschmeding, R. , Logtenberg, T. , and Clevers, H. (1999). Synergy between tumor suppressor APC and the beta-catenin–Tcf4 target Tcf1. Science 285, 1923–1926.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rozen, S. , and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
| PubMed | CAS |
Satterfield, M. C. , Bazer, F. W. , and Spencer, T. E. (2006). Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75, 289–296.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Satterfield, M. C. , Dunlap, K. A. , Hayashi, K. , Burghardt, R. C. , Spencer, T. E. , and Bazer, F. W. (2007). Tight and adherens junctions in the ovine uterus: differential regulation by pregnancy and progesterone. Endocrinology 148, 3922–3931.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Spencer, T. E. , and Bazer, F. W. (1995). Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the ewe. Biol. Reprod. 53, 1527–1543.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Spencer, T. E. , Stagg, A. G. , Joyce, M. M. , Jenster, G. , Wood, C. G. , Bazer, F. W. , Wiley, A. A. , and Bartol, F. F. (1999). Discovery and characterization of endometrial epithelial messenger ribonucleic acids using the ovine uterine gland knockout model. Endocrinology 140, 4070–4080.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Spencer, T. E. , Johnson, G. A. , Bazer, F. W. , and Burghardt, R. C. (2004a). Implantation mechanisms: insights from the sheep. Reproduction 128, 657–668.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Spencer, T. E. , Johnson, G. A. , Burghardt, R. C. , and Bazer, F. W. (2004b). Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol. Reprod. 71, 2–10.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Stewart, M. D. , Johnson, G. A. , Gray, C. A. , Burghardt, R. C. , Schuler, L. A. , Joyce, M. M. , Bazer, F. W. , and Spencer, T. E. (2000). Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy. Biol. Reprod. 62, 1779–1789.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tan, J. , Paria, B. C. , Dey, S. K. , and Das, S. K. (1999). Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 140, 5310–5321.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Taylor, K. M. , Gray, C. A. , Joyce, M. M. , Stewart, M. D. , Bazer, F. W. , and Spencer, T. E. (2000). Neonatal ovine uterine development involves alterations in expression of receptors for estrogen, progesterone, and prolactin. Biol. Reprod. 63, 1192–1204.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Thie, M. , Fuchs, P. , Butz, S. , Sieckmann, F. , Hoschutzky, H. , Kemler, R. , and Denker, H. W. (1996). Adhesiveness of the apical surface of uterine epithelial cells: the role of junctional complex integrity. Eur. J. Cell Biol. 70, 221–232.
| PubMed | CAS |
Tranguch, S. , Daikoku, T. , Wang, G. H. , and Dey, S. K. (2005). Molecular complexity in establishing uterine receptivity and implantation. Cell. Mol. Life Sci. 62, 1964–1973.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tulac, S. , Overgaard, M. T. , Hamilton, A. E. , Jumbe, N. L. , Suchanek, E. , and Giudice, L. C. (2006). Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. J. Clin. Endocrinol. Metab. 91, 1453–1461.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Veeman, M. T. , Axelrod, J. D. , and Moon, R. T. (2003). A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367–377.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wang, X. , Matsumoto, H. , Zhao, X. , Das, S. K. , and Paria, B. C. (2004). Embryonic signals direct the formation of tight junctional permeability barrier in the decidualizing stroma during embryo implantation. J. Cell Sci. 117, 53–62.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Widelitz, R. (2005). Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23, 111–116.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Willert, J. , Epping, M. , Pollack, J. R. , Brown, P. O. , and Nusse, R. (2002). A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Xie, H. , Tranguch, S. , Jia, X. , Zhang, H. , Das, S. K. , Dey, S. K. , Kuo, C. J. , and Wang, H. (2008). Inactivation of nuclear Wnt–{beta}-catenin signaling limits blastocyst competency for implantation. Development 135, 717–727.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Yamanaka, H. , Moriguchi, T. , Masuyama, N. , Kusakabe, M. , Hanafusa, H. , Takada, R. , Takada, S. , and Nishida, E. (2002). JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3, 69–75.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |