Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maturation system affects lipid accumulation in bovine oocytes

O. A. C. Faria https://orcid.org/0000-0002-7463-1062 A , T. S. Kawamoto B , L. R. O. Dias A , A. A. G. Fidelis A , L. O. Leme https://orcid.org/0000-0003-4818-1202 C , F. M. C. Caixeta A , A. C. M. M. Gomes E , J. F. W. Sprícigo https://orcid.org/0000-0002-5507-3923 D and M. A. N. Dode A E F
+ Author Affiliations
- Author Affiliations

A Departament of Animal Science, University of Brasilia, Animal Science, Brasília, Distrito Federal, 70910-900, Brazil.

B Departament of Veterinary Medicine, Federal University Uberlândia, Uberlândia, Minas Gerais, 38400-902, Brazil.

C Departament of Animal Science, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-073, Brazil.

D School of Veterinary and Zootechnics, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil.

E Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, 70770-900, Brazil.

F Corresponding author. Email: margot.dode@embrapa.br

Reproduction, Fertility and Development 33(5) 372-380 https://doi.org/10.1071/RD20254
Submitted: 26 September 2020  Accepted: 29 January 2021   Published: 9 March 2021

Abstract

This study evaluated the effects of three maturation systems, namely in vitro (MatV) and in vivo (MatS) systems, as well as intrafollicular transfer of immature oocytes (IFIOT; MatT), on the accumulation of lipid droplets in bovine oocytes. Lipids were evaluated using confocal microscopy and transmission electron microscopy. The expression of genes related to lipid metabolism, namely acyl-CoA synthetase short chain family member 2 (ACSS2), ELOVL fatty acid elongase 1 (ELOVL1) and fatty acid binding protein 3 (FABP3), was quantified by quantitative polymerase chain reaction. The mean (±s.d.) area occupied by lipids in immature oocytes (13 ± 2%) was similar to those matured in vivo (MatS, 16 ± 2%; MatT, 12 ± 2%). However, there was a significant increase in lipids in oocytes in the MatV group (24 ± 2%) compared with all other groups (P < 0.001). In the ultrastructural evaluations, MatV oocytes also showed the highest lipid content. The expression of ELOVL1 and FABP3 was similar in the MatS and IFIOT groups. However, transcript levels of ACSS2 were lower in IFIOT than MatV oocytes. These results indicate, for the first time, that oocytes matured by IFIOT are similar to those matured in vivo with regard to lipid accumulation, which indicates better quality than those matured in vitro.

Graphical Abstract Image

Keywords: lipids, in vitro maturation, in vivo maturation, oocytes, intrafollicular transfer of immature oocytes (IFIOT).


References

Aardema, H., Vos, P. L., Lolicato, F., Roelen, B. A., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 21311036PubMed |

Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 11774376PubMed |

Aksu, D. A., Agca, C., Aksu, S., et al. (2012). Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts. Mol. Reprod. Dev. 79, 613–625.
Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 22778065PubMed |

Albuz, F. K., Sasseville, M., Lane, M., Armstrong, D. T., Thompson, J. G., and Gilchrist, R. B. (2010). Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. 25, 2999–3011.
Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 20870682PubMed |

Amstislavsky, S., Mokrousova, V., Brusentsev, E., Okotrub, K., and Comizzoli, P. (2019). Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review. Biopreserv. Biobank. 17, 76–83.
Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review.Crossref | GoogleScholarGoogle Scholar | 30256133PubMed |

Auclair, S., Uzbekov, R., Elis, S., et al. (2013). Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am. J. Physiol. Endocrinol. Metab. 304, E599–E613.
Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 23321473PubMed |

Bergfelt, D. R., Brogliatti, G. M., and Adams, G. P. (1998). Gamete recovery and follicular transfer (graft) using transvaginal ultrasonography in cattle. Theriogenology 50, 15–25.
Gamete recovery and follicular transfer (graft) using transvaginal ultrasonography in cattle.Crossref | GoogleScholarGoogle Scholar | 10734470PubMed |

Bernal-Ulloa, S. M., Heinzmann, J., Herrmann, D., et al. (2016). Cyclic AMP Affects Oocyte Maturation and Embryo Development in Prepubertal and Adult Cattle. PLoS One 11, e0150264.
Cyclic AMP Affects Oocyte Maturation and Embryo Development in Prepubertal and Adult Cattle.Crossref | GoogleScholarGoogle Scholar | 26926596PubMed |

Caixeta, F. M. C., Sousa, R. V., Guimarães, A. L., Leme, L. O., Sprícigo, J. F. W., Netto, S. B. S., Pivato, I., and Dode, M. A. N. (2017). Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer. Zygote 25, 32–40.
Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar |

del Collado, M., Saraiva, N. Z., Lopes, F. L., et al. (2016). Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos. Reprod. Fertil. Dev. 28, 1721-1732.
Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos.Crossref | GoogleScholarGoogle Scholar |

del Collado, M., da Silveira, J. C., Oliveira, M. L. F., et al. (2017). In vitro maturation impacts cumulus–oocyte complex metabolism and stress in cattle. Reproduction 154, 881–893.
In vitro maturation impacts cumulus–oocyte complex metabolism and stress in cattle.Crossref | GoogleScholarGoogle Scholar | 28971896PubMed |

Diógenes, M. N., Guimarães, A. L. S., Leme, L. O., Maurício, M. F., and Dode, M. A. N. (2017). Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes. Theriogenology 102, 190–198.
Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 28826105PubMed |

Dunning, K. R., Anastasi, M. R., Zhang, V. J., Russell, D. L., and Robker, R. L. (2014). Regulation of fatty acid oxidation in mouse cumulus–oocyte complexes during maturation and modulation by PPAR agonists. PLoS One 9, e87327.
Regulation of fatty acid oxidation in mouse cumulus–oocyte complexes during maturation and modulation by PPAR agonists.Crossref | GoogleScholarGoogle Scholar | 24983622PubMed |

Edwards, R. G. (1965). Maturation in vitro of human ovarian oocytes. Lancet 286, 926–929.
Maturation in vitro of human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar |

Fair, T., Hyttel, P., and Greve, T. (1995). Bovine oocytes diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–442.
Bovine oocytes diameter in relation to maturational competence and transcriptional activity.Crossref | GoogleScholarGoogle Scholar | 8607973PubMed |

Fleming, A. D., Salgado, R., and Kuehl, T. J. (1985). Maturation of baboon or cow oocytes transplanted into a surrogate dominant follicle in vivo. Theriogenology 23, 193.
Maturation of baboon or cow oocytes transplanted into a surrogate dominant follicle in vivo.Crossref | GoogleScholarGoogle Scholar |

Guimarães, A. L. S., Pereira, S. A., Leme, L. O., and Dode, M. A. N. (2015). Evaluation of the simulated physiological oocyte maturation system for improving bovine in vitro embryo production. Theriogenology 83, 52–57.
Evaluation of the simulated physiological oocyte maturation system for improving bovine in vitro embryo production.Crossref | GoogleScholarGoogle Scholar |

Hansen, P. J. (2019). Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Anim. Reprod. 16, 497–507.
Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 32435293PubMed |

Hyttel, P., Fair, T., Callensen, H., and Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23–32.
Oocyte growth, capacitation and final maturation in cattle.Crossref | GoogleScholarGoogle Scholar |

Kassens, A., Held, E., Salilew-Wondim, D., Sieme, H., Wrenzycki, C., Tesfaye, D., Schellander, K., and Hoelker, M. (2015). Intrafollicular Oocyte Transfer (IFOT) of Abattoir-Derived and In Vitro-Matured Oocytes Results in Viable Blastocysts and Birth of Healthy Calves. Biol. Reprod. 92, 15: 01-14.
Intrafollicular Oocyte Transfer (IFOT) of Abattoir-Derived and In Vitro-Matured Oocytes Results in Viable Blastocysts and Birth of Healthy Calves.Crossref | GoogleScholarGoogle Scholar | 25926438PubMed |

Pavani, K. C., Rocha, A., Oliveira, E., Moreira Da Silva, F., and Sousa, M. (2020). Novel ultrastructural findings in bovine oocytes matured in vitro. Theriogenology 143, 88–97.
Novel ultrastructural findings in bovine oocytes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 31862672PubMed |

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 11328886PubMed |

Pfaffl, M. W. (2006). Relative Quantification. In: Dorak MT, editor. Real-time PCR. London: Taylor & Francis. pp. 63–82.

Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 11803560PubMed |

Sprícigo, J. F., Diógenes, M. N., Leme, L. O., Guimarães, A. L., Muterlle, C. V., Silva, B. D., Solà-Oriol, D., Pivato, I., Silva, L. P., and Dode, M. A. (2015). Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming. PLoS One 10, e0130164.
Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming.Crossref | GoogleScholarGoogle Scholar | 26107169PubMed |

Sprícigo, J. F. W., Sena Netto, S. B., Muterlle, C. V., Rodrigues, S. D. E. A., Leme, L. O., Guimaraes, A. L., Caixeta, F. M., Franco, M. M., Pivato, I., and Dode, M. A. (2016). Intrafollicular transfer of fresh and vitrified immature bovine oocytes. Theriogenology 86, 2054–2062.
Intrafollicular transfer of fresh and vitrified immature bovine oocytes.Crossref | GoogleScholarGoogle Scholar |

Sudano, M. J., Caixeta, E. S., Paschoal, D. M., Martins, A. J. R., Machado, R., Buratini, J., and Landim-Alvarenga, F. D. (2014). Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reprod. Fertil. Dev. 26, 1129–1141.
Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 24025608PubMed |

Tesfaye, D., Ghanem, N., Carter, F., Fair, T., Sirard, M. A., Hoelker, M., Schellander, K., and Lonergan, P. (2009). Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro. Reprod. Fertil. Dev. 21, 451–461.
Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 19261222PubMed |