Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Andrographolide disrupts meiotic maturation by blocking cytoskeletal reorganisation and decreases the fertilisation potential of mouse oocytes

Hong-xing Liang A , Sheng-sheng Lu A , Zheng Yan B C , Yan-ping Kuang B , Xiang-xing Zhu A , Zhi-guang Yan B , Tong Du B , Wei-ran Chai B , Hui Long B C and Qi-feng Lyu B C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China.

B Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.

C Corresponding authors. Email: lyuqifeng@126.com; yanzheng369@163.com; longhuish@aliyun.com

Reproduction, Fertility and Development 29(12) 2336-2344 https://doi.org/10.1071/RD16343
Submitted: 3 September 2016  Accepted: 8 March 2017   Published: 19 April 2017

Abstract

Andrographolide (AG) is a diterpenoid lactone isolated from the stem and leaves of Andrographis paniculata Nees that is used for the effective treatment of infectious diseases in Asian countries. Previous studies have reported adverse effects of AG on female fertility in rodents; however, the underlying mechanisms are unknown. The aim of the present study was to investigate the effects of AG on the IVM of mouse oocytes and their fertilisation potential. Immature oocytes incubated for 6, 14 or 24 h in medium containing 5, 10 or 20 μM AG showed time- and dose-dependent decreases in maturation rates compared with the control group. Immunostaining revealed that AG exposure disrupted spindle organisation and migration, as well as actin cap formation and cytokinesis. Furthermore, most oocytes exposed to 20 μM AG underwent apoptosis, and the few oocytes exposed to 5 or 10 μM AG that reached MII exhibited lower fertilisation rates after intracytoplasmic sperm injection. The findings of the present study suggest that AG may disrupt mouse oocyte meiotic maturation by blocking cytoskeletal reorganisation, and may thus have an adverse effect on female fertility.

Additional keywords: apoptosis, cytoskeleton.


References

Akbar, S. (2011). Andrographis paniculata: a review of pharmacological activities and clinical effects. Altern. Med. Rev. 16, 66–77.

Akbarsha, M. A., and Murugaian, P. (2000). Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother. Res. 14, 432–435.
Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFOhur0%3D&md5=3400da97b7a0432260420ec2240eddd9CAS |

Akbarsha, M. A., Manivannan, B., Hamid, K. S., and Vijayan, B. (1990). Antifertility effect of Andrographis paniculata (Nees) in male albino rat. Indian J. Exp. Biol. 28, 421–426.
| 1:STN:280:DyaK3czot1ylug%3D%3D&md5=69d422cd871802fce8e5735e5b9141caCAS |

Burgos, R. A., Caballero, E. E., Sánchez, N. S., Schroeder, R. A., Wikman, G. K., and Hancke, J. L. (1997). Testicular toxicity assessment of Andrographis paniculata dried extract in rats. J. Ethnopharmacol. 58, 219–224.
Testicular toxicity assessment of Andrographis paniculata dried extract in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FotFKisw%3D%3D&md5=d0dd95d2b44ee8a929aa7bf31edc8983CAS |

Chao, C. Y., Lii, C. K., Hsu, Y. T., Lu, C. Y., Liu, L., Li, C. C., and Chen, H. W. (2013). Induction of heme oxygenase 1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 34, 1843–1851.
Induction of heme oxygenase 1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WksbzI&md5=ce726f1294d4fd167ea337e8d8e24ea1CAS |

Chen, W., Feng, L., Nie, H., and Zheng, X. (2012). Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis 33, 2190–2198.
Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WqsbrO&md5=b522259704599af7d2a9700cef53944dCAS |

Cheung, H. Y., Cheung, S. H., Li, J., Cheung, C. S., Lai, W. P., Fong, W. F., and Leung, F. M. (2005). Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med. 71, 1106–1111.
Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFCqsA%3D%3D&md5=85293c654ea72d1cdca32ad4f63a033fCAS |

Coon, J. T., and Ernst, E. (2004). Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med. 70, 293–298.
Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVejtLo%3D&md5=d84eea9e4aafab32239449ce827d1e3dCAS |

Eichenlaub-Ritter, U., Shen, Y., and Tinneberg, H. R. (2002). Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod. Biomed. Online 5, 117–124.
Manipulation of the oocyte: possible damage to the spindle apparatus.Crossref | GoogleScholarGoogle Scholar |

Harjotaruno, S., Widyawaruyanti, A., and Zaini, N. C. (2008). Apoptosis inducing effect of andrographolide on TF-47 human breast cancer cell line. Afr. J. Tradit. Complement. Altern. Med. 4, 345–351.
Apoptosis inducing effect of andrographolide on TF-47 human breast cancer cell line.Crossref | GoogleScholarGoogle Scholar |

Hupalowska, A., Kalaszczynska, I., Hoffmann, S., Tsurumi, C., Kubiak, J. Z., Polanski, Z., and Ciemerych, M. A. (2008). Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint. Biol. Reprod. 79, 1102–1110.
Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltL%2FK&md5=2979c2f38a9601700c4949412a133f9fCAS |

Kaufman, M. H., and Howlett, S. K. (1986). The ovulation and activation of primary and secondary oocytes in LT/Sv strain mice. Gamete Res. 14, 255–264.
The ovulation and activation of primary and secondary oocytes in LT/Sv strain mice.Crossref | GoogleScholarGoogle Scholar |

Lai, Y. H., Yu, S. L., Chen, H. Y., Wang, C. C., Chen, H. W., and Chen, J. J. (2013). The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 34, 1069–1080.
The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntV2is7s%3D&md5=81dd4d706e9758be533c45ba0a8f3c6aCAS |

Lee, Y. C., Lin, H. H., Hsu, C. H., Wang, C. J., Chiang, T. A., and Chen, J. H. (2010). Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur. J. Pharmacol. 632, 23–32.
Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFKhu78%3D&md5=008e3d4de0438dde4c4d0c7e05b75e2bCAS |

Li, J., Zhang, C., Jiang, H., and Cheng, J. (2015). Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/aKT pathway and suppresses breast cancer growth. Onco Targets Ther. 8, 427–435.
Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/aKT pathway and suppresses breast cancer growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt1agsbg%3D&md5=240afe9475acd3afb478a399a8a61981CAS |

Lim, J. C., Chan, T. K., Ng, D. S., Sagineedu, S. R., Stanslas, J., and Wong, W. S. (2012). Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol. 39, 300–310.
Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVOjuro%3D&md5=6e5bb5a216610d768bc347a1921642dcCAS |

Lin, T. P., Chen, S. Y., Duh, P. D., Chang, L. K., and Liu, Y. N. (2008). Inhibition of the Epstein–Barr virus lytic cycle by andrographolide. Biol. Pharm. Bull. 31, 2018–2023.
Inhibition of the Epstein–Barr virus lytic cycle by andrographolide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFCksg%3D%3D&md5=bb78b6e89935ee74b5d34ff60d1466efCAS |

Long, H., Lu, S. S., Kuang, Y. P., Yan, Z. G., Liang, H. X., Yu, S., Chai, W. R., Yan, Z., and Lyu, Q. F. (2013). Incubation of sperm heads impairs fertilization and early embryo development following intracytoplasmic sperm injection (ICSI) by decreasing oocyte activation in mice. Biotechnol. Lett. 35, 1823–1829.
Incubation of sperm heads impairs fertilization and early embryo development following intracytoplasmic sperm injection (ICSI) by decreasing oocyte activation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKltbrI&md5=dc630fb84105518a53914fd1bfd026f6CAS |

Luvoni, G. C., Tessaro, I., Apparício, M., Ruggeri, E., Luciano, A. M., and Modina, S. C. (2012). Effect of vitrification of feline ovarian cortex on follicular and oocyte quality and competence. Reprod. Domest. Anim. 47, 385–391.
Effect of vitrification of feline ovarian cortex on follicular and oocyte quality and competence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zmtVGruw%3D%3D&md5=dfc69a510bd19080a1c7db712788a23aCAS |

Lyu, Q. F., Deng, L., Xue, S. G., Cao, S. F., Liu, X. Y., Jin, W., Wu, L. Q., and Kuang, Y. P. (2010). New technique for mouse oocyte injection via a modified holding pipette. Reprod. Biomed. Online 21, 663–666.
New technique for mouse oocyte injection via a modified holding pipette.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbjt1Snug%3D%3D&md5=7e0e3b5ce17ba1a87aff62bb3135a66fCAS |

Maro, B., and Verlhac, M. H. (2002). Polar body formation: new rules for asymmetric divisions. Nat. Cell Biol. 4, E281–E283.
Polar body formation: new rules for asymmetric divisions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFKmtrs%3D&md5=60264dccc41d070f6ecbd9c2975162abCAS |

Nogueira, D., Sadeu, J. C., and Montagut, J. (2012). In vitro oocyte maturation: current status. Semin. Reprod. Med. 30, 199–213.
In vitro oocyte maturation: current status.Crossref | GoogleScholarGoogle Scholar |

Polanski, Z. (2013). Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes. Reprod. Fertil. Dev. 25, 472–483.

Reddy, V. L., Reddy, S. M., Ravikanth, V., Krishnaiah, P., Goud, T. V., Rao, T. P., Ram, T. S., Gonnade, R. G., Bhadbhade, M., and Venkateswarly, Y. (2005). A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat. Prod. Res. 19, 223–230.
A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVWrs70%3D&md5=3796067ec253b75cf96bca1d0a088a5fCAS |

Sakila, S., Begum, N., Kawsar, S., Begum, Z. A., and Zoha, M. S. (2009). Relationship of anti-fertility effects of Andrographis paniculata and hormonal assay in female rats. Bangladesh J. Med. Sci 8, 10–14.
Relationship of anti-fertility effects of Andrographis paniculata and hormonal assay in female rats.Crossref | GoogleScholarGoogle Scholar |

Shamsuzzoha, M., Rahman, M. S., and Ahmed, M. M. (1979). Antifertility activity of a medicinal plant of the genus Andrografis Wall. (family Acanthaceae). Bangladesh Med. Res. Counc. Bull. 5, 14–18.
| 1:STN:280:DyaL3c3msFSitQ%3D%3D&md5=5d30a64e7fe6464677210d220925bc4fCAS |

Shen, Y. C., Chen, C. F., and Chiou, W. F. (2002). Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br. J. Pharmacol. 135, 399–406.
Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Krsbo%3D&md5=5d6a4935fe7778236b98bcc117ebd842CAS |

Sun, S. C., and Kim, N. H. (2012). Spindle assembly checkpoint and its regulators in meiosis. Hum. Reprod. Update 18, 60–72.
Spindle assembly checkpoint and its regulators in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1agsbnE&md5=8613bb6c868c3d349cb8ae65c3298c16CAS |

Wang, T., Liu, B., Zhang, W., Wilson, B., and Hong, J. S. (2004). Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron–glia cultures by inhibiting microglial activation. J. Pharmacol. Exp. Ther. 308, 975–983.
Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron–glia cultures by inhibiting microglial activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVWntbw%3D&md5=f1179ca666304c54e91fef74998080b3CAS |

Yang, S., Evens, A. M., Prachand, S., Singh, A. T., Bhalla, S., David, K., and Gordon, L. I. (2010). Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin. Cancer Res. 16, 4755–4768.
Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aktbjJ&md5=58c6e5275b37a46baff2006714a9769cCAS |

Zhai, Z. J., Li, H. W., Liu, G. W., Qu, X. H., Tian, B., Yan, W., Lin, Z., Tang, T. T., Qin, A., and Dai, K. R. (2014a). Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br. J. Pharmacol. 171, 663–675.
Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFWrtg%3D%3D&md5=0a022c8b774af129178bdd7e84d6e026CAS |

Zhai, Z. J., Qu, X. H., Yan, W., Li, H. W., Liu, G. W., Liu, X. Q., Tang, T. T., Qin, A., and Dai, K. R. (2014b). Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res. Treat. 144, 33–45.
Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2ntbs%3D&md5=ef4c484249befb6baba41a8a0e1782c3CAS |

Zhang, Z. R., Zaharna, M., Wong, M. M., Chiu, S. K., and Cheung, H. Y. (2013). Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One 8, e54577.
Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVelsbY%3D&md5=23b9e8dda11243ac71c94f6efe0f939eCAS |

Zhou, J., Zhang, S., Ong, C. N., and Shen, H. M. (2006). Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem. Pharmacol. 72, 132–144.
Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1altb8%3D&md5=d02506c8979a04f3a4b97b83dbf94ca5CAS |

Zhou, J., Lu, G. D., Ong, C. S., Ong, C. N., and Shen, H. M. (2008). Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol. Cancer Ther. 7, 2170–2180.
Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslCnsr0%3D&md5=79d5a5f97fbebc868dd06f3c41fdb221CAS |

Zhou, B., Zhang, D., and Wu, X. (2013). Biological activities and corresponding SARs of andrographolide and its derivatives. Mini Rev. Med. Chem. 13, 298–309.
| 1:CAS:528:DC%2BC3sXivVyqtL0%3D&md5=bdab5c1827456c07a739019b398ee061CAS |

Zhou, D., Shen, X., Gu, Y., Zhang, N., Li, T., Wu, X., and Lei, L. (2014). Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes. BMC Dev. Biol. 14, 28.
Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar |