Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Responses of pea plants to elevated UV-B radiation at varying nutrient levels: N-metabolism, carbohydrate pool, total phenolics and yield

Suruchi Singh A , Shashi B. Agrawal A and Madhoolika Agrawal A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi-221005, India.

B Corresponding author. Email: madhoo.agrawal@gmail.com

Functional Plant Biology 42(11) 1045-1056 https://doi.org/10.1071/FP15003
Submitted: 8 January 2015  Accepted: 17 August 2015   Published: 29 September 2015

Abstract

The effects of elevated UV-B (280–315 nm) were assessed on nitrogen metabolism, carbohydrate pool, total phenolics, photosynthetic pigments, UV-B absorbing compounds, variables related to oxidative stress, biomass and yield of pea plants grown under various levels of NPK. The NPK levels assayed were: background NPK level (F0); recommended NPK (F1) and recommended NK + 1.5 × recommended P (F2) and the UV-B levels were: control (C) and elevated (T). The responses of T plants varied with different combinations of NPK. Yield reduced under elevated UV-B at all NPK levels with maximum reduction in F0T and minimum reduction in F1T. Leghaemoglobin content was reduced under elevated UV-B at all NPK levels. Maximum increase in malondialdehyde content recorded in F0T plants corresponded with higher superoxide and hydrogen peroxide contents. Nitrite reductase activity decreased significantly under UV-B at all NPK levels, but nitrate reductase activity increased significantly in F1T and F2T. Maximum reduction in C : N ratio of leaves in F2T plants suggests competition between sucrose synthesis and nitrate reduction under additional P level. The study concludes that application of recommended level of NPK caused least changes in N metabolism leading to minimum yield losses due to elevated UV-B stress.

Additional keywords: carbohydrate, nitrogen metabolism, NPK, pea, UV-B.


References

Adamse P, Britz SJ (1992) Amelioration of UV-B damage under high irradiance: I. Role of photosynthesis. Photochemistry and Photobiology 56, 645–650.
Amelioration of UV-B damage under high irradiance: I. Role of photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1Cmug%3D%3D&md5=c976b7be293fb6008ae143c8a11a51a4CAS |

Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. In ‘Advances in botanical research. Vol. 52’. (Ed. JP Jacquot) pp. 46–87. (Academic Press: Burlington, MA, USA)

Alexieva V, Sergiev I, Mapelli S, Karano E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment 24, 1337–1344.
The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFCltw%3D%3D&md5=6df73395527fabd4b5c0e99f132e7df8CAS |

Allen SE, Grimshaw HM, Rowlan AP (1986) Chemical analysis. In ‘Methods in plant ecology’. (Eds PD Moore, SB Chapman) pp. 285–344. (Blackwell Scientific Publishers: Oxford)

Bacanamwo M, Harper JE (1996) Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C : N ratio. Physiologia Plantarum 98, 529–538.
Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C : N ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFKqt7c%3D&md5=866ba7e1731997bd7146162b82ef4446CAS |

Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annual Review of Plant Physiology and Plant Molecular Biology 49, 53–75.
Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVSiurw%3D&md5=9fe7e18ff4ade2bd2b7d57107358f2a8CAS | 15012227PubMed |

Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology 126, 1105–1115.
An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvgs1Gltg%3D%3D&md5=268b11fb53d2a27efa36bc3d285116eeCAS | 11457961PubMed |

Bojović B, Stojanović J (2005) Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Archives of Biological Sciences 57, 283–290.
Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition.Crossref | GoogleScholarGoogle Scholar |

Bray HG, Thorpe WY (1954) Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Analysis 1, 27–52.
Analysis of phenolic compounds of interest in metabolism.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2M%2FgsFWjsQ%3D%3D&md5=618602d4afe5656992328d656ca18812CAS | 13193524PubMed |

Britton C, Mehley AC (1955) Assay of catalase and peroxidase. In ‘Methods in enzymology. Vol. 2’. (Eds SP Colowick, NO Kalpan) pp. 764–775. (Academic Press Inc.: New York)

Bryant JP, Clausen TP, Reichardt PB, McCarthy MC, Wener RA (1987) Effect of nitrogen fertilization upon the chemistry and nutritional value of quaken aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura confictana (Walker)). Oecologia 73, 513–517.
Effect of nitrogen fertilization upon the chemistry and nutritional value of quaken aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura confictana (Walker)).Crossref | GoogleScholarGoogle Scholar |

Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In ‘Photophysiology’. (Ed. AC Giese) pp. 131–171. (Academic Press: New York)

Champigny ML, Foyer CH (1992) Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Plant Physiology 100, 7–12.
Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlSjtbg%3D&md5=5af0a9b46c6246d483966b535ed9082aCAS | 16653003PubMed |

Chimphango SBM, Musil CF, Dakora FD (2003) Effects of UV-B radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes. Functional Plant Biology 30, 309–318.
Effects of UV-B radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVKlt7Y%3D&md5=ea4b431bea3ba3ad208391db7f0964d3CAS |

Choudhary KK, Agrawal SB (2014) Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated UV-B radiation: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. Environmental and Experimental Botany 99, 122–132.
Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated UV-B radiation: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislKls7o%3D&md5=d0fef5642d3e256e73ca66bde82141a9CAS |

Correia CM, Coutinho JF, Bacelar EA, Gonçalves BM, Björn LO, Pereira JM (2012) Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize. Scientific World Journal
Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.Crossref | GoogleScholarGoogle Scholar | 22629161PubMed |

DuBois M, Gilles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimeteric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.
Colorimeteric method for determination of sugars and related substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XjvFynsg%3D%3D&md5=9ff167b1d78f5432978ff16c07bbe999CAS |

Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Herouart D, Frendo P (2012) The legume root nodule: from symbiotic nitrogen fixation to senescence. In ‘Senescence’. (Ed. T Nagata) pp. 137–68. (Intechopen: Croatia)

Duxbury AC, Yentsch CS (1956) Plankton pigment monographs. Journal of Marine Research 15, 19–101.

Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase. Analytical Biochemistry 70, 616–620.
Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFOnt7s%3D&md5=725cda6ac11a5b69c0c20d9645aa2d48CAS | 817618PubMed |

Fabón G, Monforte L, Tomas-Las-Heras R, Núñez-Olivera E, Martinez-Abaigar J (2012) Dynamic response of UV-absorbing compounds, quantum yield and the xanthophylls cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort. Journal of Plant Physiology 169, 20–26.
Dynamic response of UV-absorbing compounds, quantum yield and the xanthophylls cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort.Crossref | GoogleScholarGoogle Scholar | 21944876PubMed |

Fridovich I (1974) Superoxide dismutase. Advances in Enzymology 41, 35–97.

Gastal F, Lemaire G (2002) N uptake and distribution in crops. An agronomical and ecophysiological perspective. Journal of Experimental Botany 53, 789–799.
N uptake and distribution in crops. An agronomical and ecophysiological perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSntL0%3D&md5=1d56b2c55be490544f4ad180e12a6cbfCAS | 11912222PubMed |

George T, Singleton PW (1992) Nitrogen assimilation traits and dinitrogen fixation in soybean and common bean. Agronomy Journal 84, 1020–1028.
Nitrogen assimilation traits and dinitrogen fixation in soybean and common bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitV2ntLc%3D&md5=beb9010172191c53ab1f303c030c7c9fCAS |

Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry 43, 445–448.
Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFCksbk%3D&md5=67ba5e670e41750292fd6cb3fb1721a4CAS | 15949721PubMed |

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909–930.
Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKnu7fF&md5=d8466bc1f0ea5a1d21bd608636a35002CAS | 20870416PubMed |

Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiology 108, 753–759.

Green AES, Cross KR, Smith LA (1980) Improved analytical characterization of ultraviolet skylight. Photochemistry and Photobiology 31, 59–65.
Improved analytical characterization of ultraviolet skylight.Crossref | GoogleScholarGoogle Scholar |

Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhaddt KE, Gensemer RW (1997) The effects of ultraviolet- B radiation on higher plants. In ‘Plants for environmental studies’. (Eds W Wang, J Goursuch, JS Hughes) pp. 1–35. (CRC Press: Boca Raton, FL, USA)

Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany 59, 93–109.
Sucrose transport in the phloem: integrating root responses to phosphorus starvation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SitbY%3D&md5=7c95b234dd23e65e5f6fd07fb4c9f563CAS | 18212031PubMed |

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198.
Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtFWgtLw%3D&md5=2ab91884d83e3a0144fd58ea4d7abf44CAS | 5655425PubMed |

Hunt R (1982) ‘Plant growth analysis.’ (University Press: Baltimore, MD, USA)

Hunt JE, McNeil DL (1998) Nitrogen status affects UV-B sensitivity of cucumber. Australian Journal of Plant Physiology 25, 79–86.
Nitrogen status affects UV-B sensitivity of cucumber.Crossref | GoogleScholarGoogle Scholar |

Ibrahim MH, Jaakar HZ, Rahmat A, Rahman ZA (2012) Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila blume (Kacip Fatimah). International Journal of Molecular Sciences 13, 393–408.
Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila blume (Kacip Fatimah).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFynsQ%3D%3D&md5=8fea9aac9f850d185144a442f3fa5d8dCAS | 22312260PubMed |

Jackson ML (1958) ‘Soil chemical analysis.’ (Prentice-Hall: New Delhi)

Jansen MAK, Bornman JF (2012) UV-B radiation: from generic stressor to specific regulator. Physiologia Plantarum 145, 501–504.
UV-B radiation: from generic stressor to specific regulator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Olu77M&md5=ace6d5af312b0457c2398d34f8e69bacCAS |

Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Advances in Botanical Research 22, 97–162.
The effects of ultraviolet-B radiation on plants: a molecular perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFSrs7w%3D&md5=facf2f2fa84b9384deaa9ffad8f546a7CAS |

Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology 120, 191–218.
Field crop responses to ultraviolet-B radiation: a review.Crossref | GoogleScholarGoogle Scholar |

Keller T, Schwager H (1977) Air pollution and ascorbic acid. European Journal of Forest Pathology 7, 338–350.
Air pollution and ascorbic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFOks7g%3D&md5=759693cc7790cbccfb1e97898eaf9588CAS |

LaRue TA, Child JJ (1979) Sensitive fluorometric assay for leghaemoglobin. Analytical Biochemistry 92, 11–15.
Sensitive fluorometric assay for leghaemoglobin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXotlWksg%3D%3D&md5=78b5efa8f5adcfb4640605248bf37753CAS | 570809PubMed |

Logan BA, Demmig-Adams B, Rosenstiel TN, Adams WW (1999) Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209, 213–220.
Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Gjtro%3D&md5=56aaa75af1c08f30735f9f902f5f9ce8CAS | 10436224PubMed |

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. Journal of Biological Chemistry 193, 265–275.

Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany 41, 1053–1062.
Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksV2qs7k%3D&md5=77046094d9b8c2096f0d3b226b75430bCAS |

McCready RM, Guggolz J, Silveira V, Owens HS (1950) Determination of starch and amylose in vegetables. Analytical Chemistry 22, 1156–1158.
Determination of starch and amylose in vegetables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXksVyr&md5=79bb64653f21eb422b7d2e7f91c16953CAS |

Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology 74, 475–480.
Effects of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvVyjtr0%3D&md5=525be20350a6f4f7452c183e73a8cda5CAS | 16663447PubMed |

Moll RH, Kamprath EJ, Jackson W (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal 74, 562–564.
Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization.Crossref | GoogleScholarGoogle Scholar |

Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Björn U, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2006) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment 30, 85–112.
Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus.Crossref | GoogleScholarGoogle Scholar |

Muofhe ML, Dakora FD (1999) Root phenolic accumulation and loss of autoregulation of root nodule formation in Bambara groundnut (Vigna subteranea) following boron nutrition and cotyledon excision. Australian Journal of Plant Physiology 26, 435–441.
Root phenolic accumulation and loss of autoregulation of root nodule formation in Bambara groundnut (Vigna subteranea) following boron nutrition and cotyledon excision.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslyrtr4%3D&md5=3e6b842df409ca071f0d5168aa9c81ddCAS |

Murali NS, Teramura AH (1985) Effects of ultraviolet-B irradiance on soybean VI. Biomass and concentration and uptake of nutrient at varying P supply. Journal of Plant Nutrition 8, 177–192.
Effects of ultraviolet-B irradiance on soybean VI. Biomass and concentration and uptake of nutrient at varying P supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFOmsLc%3D&md5=84b09ce244c67292fc19563ee5cb749aCAS |

Nicholas JD, Nason A (1957) Determination of nitrate and nitrite. Methods in Enzymology 3, 981–984.
Determination of nitrate and nitrite.Crossref | GoogleScholarGoogle Scholar |

Pfundel EE, Pan RS, Dilley RA (1992) Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated-chloroplasts and intact leaves. Plant Physiology 98, 1372–1380.
Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated-chloroplasts and intact leaves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnitV2nuw%3D%3D&md5=06b525c60234ccff03457d675c03c1cbCAS | 16668802PubMed |

Phillips DA (2000) Biosynthesis and release of rhizobial nodulation gene inducers by legumes. In ‘Prokaryotic nitrogen fixation: a model system for the analysis of a biological process’. (Ed. EW Triplett) pp. 349–364. (Horizon Scientific Press: Wymondham, UK)

Raghothama KG (1999) Phosphate acquisition. Annual Review of Plant Physiology 50, 665–693.
Phosphate acquisition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yktrs%3D&md5=5b9a306c9088a855c17b6d2a33648be7CAS |

Rao Subba PV, Tower GHN (1970) L-phenylalanine ammonia-lyase (Ustilago hordei). In ‘Methods in enzymology’. (Eds SP Colowick, NO Kaplan) pp. 581–585. (Academic Press: New York)

Ribet J, Drevon JJ (1996) The phosphorus requirement of N2-fixing and urea-fed Acacia mangium. New Phytologist 132, 383–390.
The phosphorus requirement of N2-fixing and urea-fed Acacia mangium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislOisbk%3D&md5=09621ba6c194ca8cfb23c036227130b7CAS |

Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies stimulating stratospheric ozone depletion. Oecologia 127, 1–10.
A meta-analysis of plant field studies stimulating stratospheric ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant & Cell Physiology 46, 1350–1357.
Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1Omsro%3D&md5=f3a4c75df2383f5e7519c721911e4f00CAS |

Singh S, Kumari R, Agrawal M, Agrawal SB (2012) Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants. Physiologia Plantarum 145, 474–484.
Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqsb7K&md5=26f3f39c07871a5d0692aa2c7b95a898CAS | 22304244PubMed |

Singh S, Agrawal M, Agrawal SB (2013) Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B absorbing compounds and membrane damage. Photosynthesis Research 115, 123–138.
Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B absorbing compounds and membrane damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFertL8%3D&md5=8d396191e2e8f3d9505ed9029f8445c5CAS | 23686471PubMed |

Singh S, Agrawal M, Agrawal SB (2014) Impact of ultraviolet-B radiation on photosynthetic capacity, antioxidative potential and metabolites in Solanum tuberosum L. under varying levels of soil NPK. Acta Physiologiae Plantarum 36, 1441–1453.
Impact of ultraviolet-B radiation on photosynthetic capacity, antioxidative potential and metabolites in Solanum tuberosum L. under varying levels of soil NPK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVChu7k%3D&md5=b598eb930348e5e0603751691393197bCAS |

Smith JL, Buritt DJ, Bannister P (2000) Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Annals of Botany 86, 1057–1063.
Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Kku70%3D&md5=745940fafc2f9dd455fc6b2f63870314CAS |

Sulieman S, Tran S (2013) Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Critical Reviews in Biotechnology 33, 309–327.
Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Sltb3M&md5=d75626e83ed9b1291a53d194b958f54eCAS | 22793647PubMed |

Vass I, Szilárd A, Cosmin S (2005) Adverse effects of UV-B Light on the structure and function of the photosynthetic apparatus. In ‘Handbook of photosynthesis’. (2nd edn) (Ed. M Pes-sarakli) pp. 827–845. (CRC Press: New York)

Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38.
An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2cXitlGmug%3D%3D&md5=5a6961d80f7a7a5cffa1d16eb7f24f93CAS |

Walsh KB, Vessey JK, Layzell DB (1987) Carbohydrate supply and N2 fixation in soybean. The effect of varied day length and stem girdling. Plant Physiology 85, 137–144.
Carbohydrate supply and N2 fixation in soybean. The effect of varied day length and stem girdling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvFCqu7c%3D&md5=9599825668508df73eb966b921bb693bCAS | 16665645PubMed |

Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 55, 782–786.
Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSkurrL&md5=a810f6fa60c444810a222eedc75e8548CAS |