Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Quantification of stress adaptation by laser-induced fluorescence spectroscopy of plants exposed to engine exhaust emission and drought

Narayanan Subhash A B , Changatharayil N. Mohanan A , Rupananda J. Mallia A and Vadekkeveetil Muralidharan A
+ Author Affiliations
- Author Affiliations

A Centre for Earth Science Studies, PB 7250, Thuruvikkal PO, Trivandrum 695 031, India.

B Corresponding author; email: subhashn@vsnl.com

Functional Plant Biology 31(7) 709-719 https://doi.org/10.1071/FP03253
Submitted: 22 December 2003  Accepted: 26 April 2004   Published: 22 July 2004

Abstract

The effects of drought and petrol engine exhaust pollutants, such as SO2 and NO2 and suspended particulate matter (SPM), on the photosynthetic activity of colocasia [Colocasia esculenta (L.) Schott], kacholam (Kaempferia galanga L.) and tapioca (Manihot esculenta Crantz) plants were studied from in vivo laser-induced chlorophyll fluorescence (LICF) spectra. An open-top chamber (OTC) of 2.5 m diameter and 3 m height incorporating an air-filtering unit was developed for this study. Plants grown inside the OTC were exposed to exhaust emissions from a two-stroke Birla Yamaha genset for 10 d, while a control group was maintained outside. Gaseous pollutants and SPM present inside the OTC during the exposure period were measured with a high-volume air sampler. The steady-state LICF spectra of the control and treated plants were recorded in the 650–750-nm region. Fluorescence induction kinetics (Kautsky effect) was also recorded during the stress period from dark-adapted intact plant leaves at the chlorophyll bands of 685 and 730 nm. The vitality indexes (Rfd-685 and Rfd-730) and stress adaptation index (Ap) derived from the induction kinetics were utilised along with the chlorophyll fluorescence intensity ratio (F685 /  F730) for evaluation of stress-induced changes in plants.

It has been observed that F685 /  F730 ratio increased for all plants inside the OTC whereas the Rfd-685, Rfd-730 and Ap values showed a downward trend with increasing pollution stress. As compared to colocasia and tapioca, kacholam plants showed higher resistance to exhaust emission and water stress as well as better capacity to regain its photosynthetic functioning on removal of the stress. Results of this study demonstrate the capability of stress adaptation index for early quantification of the functional impairment of photosynthetic apparatus in different species of plants due to air pollution and drought stresses.

Keywords: air pollution, engine exhaust emissions, F685 /  F730 ratio, laser-induced chlorophyll fluorescence, open-top chamber, stress adaptation index, vitality index, water stress.


Acknowledgments

This work was supported by the Science, Technology and Environment Department, Government of Kerala, India. RJM was supported by a fellowship of the Department of Science and Technology, New Delhi. The encouragement shown by the Director, CESS and the active co-operation of the project staff and technicians of Atmospheric Sciences Division in this work are acknowledged.


The authors thank Prof. Reto J. Strasser of the Bioenergetics and Microbiology Laboratory, University of Geneva, for his critical and constructive review of the manuscript.


References


Adaros G, Weigel HJ, Jager HJ (1989) Environment in open-top chambers and its effects on growth and yield of plants. I. Measurement of microclimatic parameters. Garterbauwissenschaft 54, 165–171. open url image1

Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1–15. open url image1

Bell JNB (1985) The direct effects of air pollution on plants. ‘Air pollution and plants’. (Ed. C Troyanowsky) pp. 116–127. (VCH Verlagsgessellschaft: Weinheinm, Germany)

Benner P, Sabel P, Wild A (1988) Photosynthesis and transpiration of healthy and diseased trees in the course of three vegetation periods. Trees 2, 223–232. open url image1

Bittlingmaier L (1997) ‘Air pollutant exclusion experiment with spruce trees at Edelmannshof: physiological and biochemical investigations.’ Forschungsbericht FZKA-PEF 64-Project Report. Forschungzentrum Karlsruhe, Karlsruhe, Germany.

Brenninger C, Tranquillini W (1983) Photosynthese, Transpiration und Spatoffungsverhalten verschiendener Holzarten nach Begasung mit SO2. European Journal of Forest Pathology 13, 228–238. open url image1

Brough A, Parry MA, Whittingham CP (1980) The effect of low concentrations of ambient pollutants on the growth and yield of crops. Reference Book, Ministry of Agriculture, Fisheries and Food 326, 87–94. open url image1

Chappelle EW, Williams DL (1987) Laser-induced fluorescence (LIF) from plant foliage. IEEE Transactions in Geoscience and Remote Sensing Ge 25, 726–736. open url image1

Chappelle EW, McMurtrey JE, Wood FM, Newcomb WW (1984a) Laser-induced fluorescence of green plants 2: LIF caused by nutrient deficiencies in corn. Applied Optics 23, 139–142. open url image1

Chappelle EW, Wood FM, McMurtrey JE, Newcomb WW (1984b) Laser-induced fluorescence of green plants 1: a technique for remote detection of vegetation stress and species differentiation. Applied Optics 23, 134–138. open url image1

D’Ambrosio N, Szabo K, Lichtenthaler HK (1992) Increase in the chlorophyll fluorescence ratio F685 / F735 during autumnal chlorophyll breakdown. Radiation and Environmental Biophysics 31, 51–56. open url image1

Gitelson AA, Buschmann C, Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735 / F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment 69, 296–302.
Crossref | GoogleScholarGoogle Scholar | open url image1

Govindjee (1995) Sixty three years since Kautsky: chlorophyll fluorescence. Australian Journal of Plant Physiology 22, 131–160. open url image1

Gross K (1987) Gaswecheselmessungen an jungen Fichen and Tannen Wahrened Begasung mit Ozon und Schwefeldioxid (allein und in Kombination) im Kleinphytotron. Allg. Forst-u. Jagdztg 158, 31–36. open url image1

Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. ‘Air pollution by photochemical oxidants’. (Ed. R Guderian) pp. 129–333. (Springer-Verlag: Berlin, Germany)

Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution of plants. Journal of Environmental Quality 2, 365–368. open url image1

Heck WW, Heagle AS, Shinner DS (1986) Effects on vegetation: native, crops, forests. ‘Air pollution.’ (Ed. AS Stern) pp. 247–350. (Academic Press: New York, NY)

Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332–1334. open url image1

Hogsett WE, Tingey DT, Holman SR (1985) A programmable exposure control system for determination of effects of pollutant exposure regimes on plant growth. Atmospheric Environment 19, 1135–1145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jacobs MB, Hochheiser S (1958) Continuous sampling and ultramicro determination of nitrogen dioxide in air. Analytical Chemistry 30, 426–428. open url image1

Jager HJ, Weigel HJ, Grunhage L (1986) Physiologosche und biochemische aspekte der Wirkung von Immissionen auf waldbaume. European Journal of Forest Pathology 16, 98–109. open url image1

Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Die Naturwissenschaften 19, 964. open url image1

Keller TH, Hassler R (1984) The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir. Oecologia 64, 284–286. open url image1

Kim MS, Mulchi CL, Daughtry CST, Chappelle EW, Mc Murtrey JE (1997) Fluorescence images of soybean leaves grown under increased ozone. In ‘Advances in laser remote sensing for terrestrial oceanographic applications’. SPIE 59, 22–31. open url image1

Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.
Crossref |
open url image1

Lange OL, Weikert RM, Wedler M, Gebel J, Heber U (1989) Photosynthese und Nahrstoffversorgung von Fichten aus einem Waldschasensgebiet auf basenarmen Untergrund. AFZ 3, 55–64. open url image1

Libera W, Ziegler H, Ziegler I (1973) Forderung der Hill-Reaktion und der CO2-Fixierung in asolierten Spinatchloroplasten durch niedere Sulfidkonzentrationen. Planta 109, 269–279. open url image1

Lichtenthaler HK (1986) Laser-induced chlorophyll fluorescence of living plants. ‘Proceedings of the remote sensing symposium (IGARSS ’86)’.1579. (Ed. TI Stein) pp. 1571–1579. (IEEE Publications:: Danvers, MA)

Lichtenthaler HK (1990) Air pollution and forest decline in central Europe and the black forest: causes and consequences. Journal of Japan Society of Civil Engineers 75, 62–65. open url image1

Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27, 45–55. open url image1

Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress condition in plants. CRC Critical Reviews Analytical Chemistry 19, s29–s85. open url image1

Lichtenthaler HK, Babani F, Langsdorf G, Buschmann C (2000) Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 38, 521–529.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lombard F, Strasser RJ (1984) Evidence of spill over changes during state-1 to state-2 transition in green leaves. ‘Advances in photosynthetic research. III’. (Ed. C Sybesma) pp. 271–274. (Dr W Junk Publishers: The Hague, The Netherlands)

Nussbaum S, Geissmann M, Eggenberg P, Strasser RJ, Fuhrer J (2001) Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. Journal of Plant Physiology 158, 757–766. open url image1

Pande PC, Mansfield TA (1985) Responses of spring barley to SO2 and NO2 pollution. Environmental Pollution. Series. A 38, 87–89.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rakhesh V, Subhash N, Mohanan CN, Muralidharan V (2002) Air pollution stress detection in plants by laser induced chlorophyll fluorescence. ‘Proceedings of the DAE-BRNS national laser symposium’. (Allied Publishers: New Delhi, India)


Roberts TM, Bell RM, Horsman DC, Colvill KE (1983) The use of open-top chambers to study the effects of air pollutants, in particular sulphur dioxide, on the growth of ryegrass Lolium perenne L. Part I — characteristics of modified open-top chambers used for both air-filtration and SO2-fumigation experiments. Environmental Pollution Series A 31, 9–33.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rosema A, Cecchi G, Pantani L, Radicatti B, Romuli M, Mazzinghi P, Van Kooten O, Kliffen C (1988) Results of the LIFT Project: air pollution effects on the fluorescence of douglas fir and poplar. ‘Applications of chlorophyll fluorescence’. (Ed. HK Lichtenthaler) pp. 307–317. (Kluwer Academic: Dordrecht, The Netherlands)

Rosema A, Ceechi G, Pantani L, Radicatti B, Romuli M, Mazzinghi P, Van Kooten O, Kliffen C (1992) Monitoring of photosynthetic activity and ozone stress by laser induced fluorescence in trees. International Journal of Remote Sensing 13, 737–751. open url image1

Schweizer B, Arndt U (1990) The Hohenheim longterm experiment — effects of ozone, SO2, and simulated acidic precipitation on tree species in a microcosm: CO2/H2O gas exchange parameters of one and two year old needles of spruce and fir. Environmental Pollutio 68, 275–292.
Crossref | GoogleScholarGoogle Scholar | open url image1

Selinger H, Knoppik D, Ziegler-jons A (1986) Einflub von Mineralstoffernahrung, Ozon und sdurem Nebel auf Photosynthrseparameter und stomatare Leitfahigkeit von Pieca abies (L.) Karst. Forstwissenschaftliches Centralblatt 105, 239–242. open url image1

Shimazaki K, Ito K, Kondo N, Sugahara K (1984) Reversible inhibition of water-splitting enzyme system by SO2-fumigation assayed by chlorophyll fluorescence and EPR signal in vivo. Plant and Cell Physiology 25, 795–803. open url image1

Strasser RJ (1978) The grouping model of plant photosynthesis. ‘Chloroplast development’. (Eds G Akoyunoglou, J Argyroudi-Akoyunoglou) pp. 513–524. (Elsevier: North Holland Biomedical Press:: Amsterdam, The Netherlands)

Strasser RJ (1981) The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. ‘Photosynthesis III — structure and molecular organisation of the photosynthetic apparatus’. (Ed. G Akoyunoglou) pp. 727–737. (Balaban International Science Services: Philadelphia, PA)

Strasser RJ (1988) A concept for stress and its application in remote sensing. ‘Applications of chlorophyll fluorescence’. (Ed. HK Lichtenthaler) pp. 333–337. (Kluwer Academic: Dordrrecht, The Netherlands)

Strasser RJ, Butler WL (1977a) Energy transfer in the photochemical apparatus of flashed bean leaves. Biochemica Biophysica Acta 449, 412–419. open url image1

Strasser RJ, Butler WL (1977b) The yield of energy transfer and the spectral distribution of excitation energy in the photochemical apparatus of flashed bean leaves. Biochimica Biophysica Acta 462, 295–306.
Crossref |
open url image1

Strasser RJ, Greppin H (1981) Primary reactions of photochemistry in higher plants. ‘Photosynthesis III — structure and molecular organisation of the photosynthetic apparatus’. (Ed. G Akoyunoglou) pp. 717–726. (Balaban International Science Services: Philadelphia, PA)

Strasser RJ, Schwarz B, Bucher JB (1987) Simultane Messung der Chlorophyll Fluoreszenz Kinetik bei zwei Wellenlängen als rasches Verfahren zur Frühdiagnose von Immissionsbelastungen an Waldbäumen.Ozoneinwirkung auf Buchen und Pappeln. European Journal of Forest Pathology 17, 149–157. open url image1

Strasser RJ, Schwarz B, Eggenberg P (1988) Fluorescence routine tests to describe the behaviour of a plant in its environment. ‘Applications of chlorophyll fluorescence.’ (Ed. HK Lichtenthaler) (Kluwer Academic: Dordrecht, The Netherlands)

Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterise and screen photosynthetic samples. ‘Probing photosynthesis: mechanisms, regulation and adaptation.,(Eds M Yunus, U Pathre, P Mohanty) pp. 445–483. (Taylor and Francis: London, UK)

Subhash N, Mazzinghi P, Fusi F, Agati G, Lercari B (1995) Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection. Photochemistry and Photobiology 62, 711–718. open url image1

Subhash N, Mohanan CN (1994) Laser-induced red chlorophyll fluorescence signatures as nutrient stress indicator in rice plants. Remote Sensing of Environment 47, 45–50.
Crossref | GoogleScholarGoogle Scholar | open url image1

Subhash N, Mohanan CN (1997) Curve fit analysis of chlorophyll fluorescence spectra: application to nutrient stress detection in sunflower. Remote Sensing of Environment 60, 347–356.
Crossref | GoogleScholarGoogle Scholar | open url image1

Subhash N, Wenzel O, Lichtenthaler HK (1999) Changes in blue-green and chlorophyll fluorescence and fluorescence ratios during senescence of green tobacco plants. Remote Sensing of Environment 69, 215–223.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tsimilli-Michael M, Strasser RJ (2002) Mycorrhization as a stress adaptation procedure. ‘Mycorrihizal technology in agriculture — from genes to bioproducts’. (Eds S Gianinazzi, H Schuepp, BJM Barea, K Haselwandter) pp. 199–209. (Birkhauser-Verlag: Basel, Switzerland)

Weigel HJ, Adaros G, Jagar HJ (1987) An open-top chamber study with filtered and non-filtered air to evaluate the effects of air pollutants on crops. Environmental Pollution 47, 231–244.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wellburn AR (1982) Effects of SO2 and NO2 on metabolic function. ‘Effects of gaseous air pollution in agriculture and horticulture’. (Eds MH Unsworth, DP Ormrod, BJM Barea, K Haselwandter) pp. 169–187. (Butterworth: London, UK)

West PW, Gaeke GC (1956) Fixation of sulphur dioxide as sulfitomercurate (III) and subsequent colourimetric determination. Analytical Chemistry 28, 1816–1819. open url image1

Winner WE, Gillespie C, Shen WS, Mooney HA (1988) Stomatal response to SO2 and O3. ‘Air pollution and plant metabolism’. (Eds S Schutle-Hosetede, NM Darall, LW Blank, AR Wellburn) pp. 255–271. (Elsevier Applied Science: London, UK)

Zimmerman R, Gunther KP (1986) Laser-induced chlorophyll a fluorescence of terrestrial plants. ‘Proceedings of international geoscience and remote sensing symposium (IGARSS ’86)’.1613. (Ed. TI Stein) pp. 1609–1613. (IEEE Publications: Danvers, MA)

Zimmerman R, Oren R, Schulze ED, Werk KS (1988) Performance of two Picea abies (L.) Karst. stands at different stage of decline. II. Photosynthesis and leaf conductance. Oecologia 76, 513–518. open url image1