A Highly Selective Chemosensor for Naked-Eye Detection of Fluoride and Aluminium(iii) Ions Based on a New Schiff Base Derivative
Masoumeh Orojloo A and Saeid Amani A BA Department of Chemistry, Faculty of Sciences, Arak University, Dr Beheshti Avenue, Arak 38156-8-8349, Iran.
B Corresponding author. Email: s-amani@araku.ac.ir
Australian Journal of Chemistry 69(8) 911-918 https://doi.org/10.1071/CH15826
Submitted: 31 December 2015 Accepted: 27 February 2016 Published: 4 April 2016
Abstract
A new chromogenic receptor, 4-((2,4-dichlorophenyl)diazenyl)-2-(3-hydroxypropylimino)methyl)phenol, has been designed and synthesized for quantitative and low-cost detection of various biological anions and cations. The dye was characterized by elemental analyses, infrared, UV-visible spectroscopy, and NMR spectroscopy. The chemosensor showed visual changes towards anions, such as F– and H2PO4–, in DMSO and towards cations, such as Al3+, Cu2+, Fe3+, and Cr3+, in DMSO/water (9 : 1). The anion recognition property of the receptor via proton transfer was monitored by UV-visible titration and 1H NMR spectroscopy. The binding constant (Ka) and stoichiometry of the host–guest complexes formed were determined by the Benesi–Hildebrand (B–H) plot and Job's method, respectively.
References
[1] J. L. Atwood, J. E. D. Davies, D. D. Macnicol, F. Vogtle, Comprehensive Supramolecular Chemistry 1996 (Pergamon Press: New York, NY).[2] P. J. Cragg, Supramolecular Chemistry. From Biological Inspiration to Biomedical Applications 2010 (Springer Science+Business Media BV, Dordrecht).
[3] R. Martinez-Manez, F. Sancenon, Chem. Rev. 2003, 103, 4419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVCqtb0%3D&md5=e23d7616f610dd91e3c9e707e635ea59CAS | 14611267PubMed |
[4] P. A. Gale, Coord. Chem. Rev. 2003, 240, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKjtbw%3D&md5=857d2ab8dfdb8be7aca9b1d7bcc6507cCAS |
[5] J. W. Steed, Chem. Soc. Rev. 2009, 38, 506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntb0%3D&md5=d0a0b65ac4fcde96845e2add489a6cffCAS | 19169464PubMed |
[6] S. Kubik, Chem. Soc. Rev. 2010, 39, 3648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksb7O&md5=9e487099075281f8381dc82df8994909CAS | 20617241PubMed |
[7] L. A. Joyce, S. H. Shabbir, E. V. Anslyn, Chem. Soc. Rev. 2010, 39, 3621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksb7E&md5=d9cedba47b6a41ff9398110d7d5242c6CAS | 20714470PubMed |
[8] C. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntbo%3D&md5=a0e3a48d63d32cbb7f546d2a8dc3a3fbCAS | 19169465PubMed |
[9] P. A. Gale, S. E. Garcia-Garrido, J. Garric, Chem. Soc. Rev. 2008, 37, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWgtg%3D%3D&md5=3f3064e2c62611ea5e48ca14d39e0150CAS | 18197339PubMed |
[10] M. Vázquez, L. Fabbrizzi, A. Taglietti, R. M. Pedrido, A. M. González‐Noya, M. R. Bermejo, Angew. Chem. 2004, 116, 1996.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. A. Gale, R. Quesada, Coord. Chem. Rev. 2006, 250, 3219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbbO&md5=a073275e07b56fc6580df3b65aeb51feCAS |
[12] T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger, F. M. Pfeffer, Coord. Chem. Rev. 2006, 250, 3094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnJ&md5=2cbf531f660b309cfaec3aa931193901CAS |
[13] A. Ghorai, J. Mondal, R. Chandra, G. K. Patra, Dalton Trans. 2015, 44, 13261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWnsrbP&md5=6ef2bdb7dd641474ed51bde8940cabc7CAS | 26126410PubMed |
[14] A. Barba-Bon, A. M. Costero, S. Gil, M. Parra, J. Soto, R. Martínez-Máñez, F. Sancenón, Chem. Commun. 2012, 48, 3000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1eks7Y%3D&md5=3551344d4934382e4f69485f458223baCAS |
[15] See pp. 529–600 in: G. Nordberg, Handbook on the Toxicology of Metals 2007 (Academic Press: New York, NY).
[16] S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi, J. F. Callan, Chem. Soc. Rev. 2012, 41, 7195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOnurjP&md5=13da5795fc24857a747178bae97cfd28CAS | 22885471PubMed |
[17] E. C. Theil, D. J. Goss, Chem. Rev. 2009, 109, 4568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbrO&md5=3e7476d042f834813bfda1b8bceac6fdCAS | 19824701PubMed |
[18] H. Arakawa, R. Ahmad, M. Naoni, H. A. Tajmir-Riahi, J. Biol. Chem. 2000, 275, 10150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFWjsL8%3D&md5=4c85ee57d52d861abf6bb0bfce25846eCAS | 10744697PubMed |
[19] H. Wu, P. Zhou, J. Wang, L. Zhao, C. Duan, New J. Chem. 2009, 33, 653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOjsLg%3D&md5=dd0fdc30249e05611a6e0a6a5246686bCAS |
[20] V. Geraldes, M. Mihalma, M. N. Pinho, A. Anil, H. Ozqunoy, B. O. Bitlishi, O. Sari, Pol. J. Environ. Stud. 2009, 18, 353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVyruro%3D&md5=acc4d8aea03683f356c4f805387e2064CAS |
[21] O. F. H. Cobos, J. F. A. Londono, L. C. F. Garcia, Dyna 2009, 160, 107.
| 1:CAS:528:DC%2BC3cXltFGrtLs%3D&md5=709957858d669b9b8ab54e658ae2daf9CAS |
[22] A. K. Susheela, M. Bhatnagar, K. Vig, N. K. Mondal, Fluoride 2005, 38, 98.
| 1:CAS:528:DC%2BD2MXms1art70%3D&md5=2c42cecf7ec313344e1a0409116b7a96CAS |
[23] Y. Ding, Y. Gao, H. Sun, H. Han, W. Wang, X. Ji, X. Liu, D. Sun, J. Hazard. Mater. 2011, 186, 1942.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVait7g%3D&md5=d32295770023eaf12d139c819acbc049CAS | 21237562PubMed |
[24] B. A. Moyer, L. H. Delmau, C. J. Fowler, A. Ruas, D. A. Bostick, J. L. Sessler, E. Katayeu, G. D. Pantos, J. M. Llinares, M. A. Hossain, S. O. Kang, K. Bowman-James, Adv. Inorg. Chem. 2006, 59, 175.
| Crossref | GoogleScholarGoogle Scholar |
[25] H. Luecke, F. A. Quiocho, Nature 1990, 347, 402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlyk&md5=4314ac114fee1d7fad293f91e217148bCAS | 2215649PubMed |
[26] J. J. He, F. A. Quiocho, Science 1991, 251, 1479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVSksL8%3D&md5=32eb7b9d40e1ed6710d120e68d70174cCAS | 1900953PubMed |
[27] E. V. Anslyn, J. Smith, D. M. Kneeland, K. Ariga, F.-Y. Chu, Supramol. Chem. 1993, 1, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVelsbc%3D&md5=e6b9118ef6337c012a1122f3ddbebfa6CAS |
[28] J. E. McKee, H. W. Wolf, Water Quality Criteria, Second Ed. 1963 (California State Water Quality Control Board: Sacramento, CA).
[29] V. K. Bhardwaj, P. Saluja, G. Hundal, M. S. Hundal, N. Singh, D. O. Jang, Tetrahedron 2013, 69, 1606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyiurfJ&md5=d36c2d319dfbad34ee59698e984af093CAS |
[30] N. R. Song, J. H. Moon, J. Choi, E. J. Jun, Y. Kim, S.-J. Kim, J. Y. Lee, J. Yoon, Chem. Sci. 2013, 4, 1765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyntbs%3D&md5=c3d2e61c5f44a6dbf7c13566b4f6ad3dCAS |
[31] P. Kaur, H. Kaur, K. Singh, Analyst (Cambridge, UK) 2013, 138, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWhtrrJ&md5=c15f579676e544b2933e4f0db2f10debCAS |
[32] S.-T. Yang, D.-J. Liao, S.-J. Chen, C.-H. Hu, A.-T. Wu, Analyst (Cambridge, UK) 2012, 137, 1553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1GmsLY%3D&md5=10fd7bbe621f0b949983242a0f9aa762CAS |
[33] D. Sarkar, A. K. Pramanik, T. K. Mondal, RSC Adv. 2014, 4, 25341 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVansL7L&md5=e9da7b22e8b0936c30979934751f417cCAS |
[34] U. Fegade, S. K. Sahoo, A. Singh, P. Mahulikar, S. Attarde, N. Sing, A. Kuwar, RSC Adv. 2014, 4, 15288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFyrsb0%3D&md5=854351fd8346941872de4c446761fbedCAS |
[35] F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFSisLc%3D&md5=552bead2d7c79ce6237441de5bb4a800CAS | 11851460PubMed |
[36] C. R. Bondy, P. A. Gale, S. J. Loeb, J. Am. Chem. Soc. 2004, 126, 5030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Whsrc%3D&md5=b8a47a32a97a398b82993d8950e903f6CAS | 15099061PubMed |
[37] A. B. Ellis, D. R. Walt, Chem. Rev. 2000, 100, 2477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslyntbs%3D&md5=5233c430c5a4dbdfbbd3e325ef8e12ecCAS | 11749291PubMed |
[38] A. M. L. Nickel, F. Seker, B. P. Ziemert, A. B. Ellis, Chem. Mater. 2001, 13, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslCltL4%3D&md5=c198481755a28d52bd4c185e7686aea0CAS |
[39] R. Martınez-Manez, F. Sancenon, Chem. Rev. 2003, 103, 4419.
| Crossref | GoogleScholarGoogle Scholar | 14611267PubMed |
[40] H. S. Jung, M. Park, D. Y. Han, E. Kim, C. Lee, S. Ham, J. S. Kim, Org. Lett. 2009, 11, 3378 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotleisbs%3D&md5=f4bc64fd98ac4246f5092bdbddf73668CAS | 19719186PubMed |
[41] R. Zhang, D. Tang, P. Lu, X. Yang, D. Liao, Y. Zhang, M. Zhang, V. W. Yam, Org. Lett. 2009, 11, 4302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnsr3P&md5=8a61b4cc22321507395331ccad3b03ebCAS | 19722507PubMed |
[42] J. Shao, H. Lin, H. Lin, Dyes Pigm. 2009, 80, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kmur%2FK&md5=4ccab84de6788d8d4f73a0f4f4fee0a1CAS |
[43] H. H. Jang, S. Yi, M. H. Kim, S. Kim, N. H. Lee, M. S. Han, Tetrahedron Lett. 2009, 50, 6241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amtbnN&md5=b62078792fe5dc2bd57010a0269cc21fCAS |
[44] M. S. Han, D. H. Kim, Angew. Chem., Int. Ed. 2002, 114, 3963.
| Crossref | GoogleScholarGoogle Scholar |
[45] D. Saravanakumar, S. Devaraj, S. Iyyampillai, K. Mohandossb, M. Kandaswamy, Tetrahedron Lett. 2008, 49, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWju7nN&md5=5ac51f62ea68c1814da089c7424a6871CAS |
[46] C. Reichardt, T. Welton, in Solvents and Solvent Effects in Organic Chemistry, Fourth Ed. 2011, pp. 550–560 (John Wiley & Sons: Weinheim).
[47] R. Arabahmadi, M. Orojloo, S. Amani, Anal. Methods 2014, 6, 7384 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWitr%2FF&md5=f6f81dbf6270ac719129445a14332c1fCAS |
[48] R. Arabahmadi, S. Amani, Supramol. Chem. 2014, 26, 321 .
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFemtrvI&md5=4cba6a4399ba544bb53de05b40067ed3CAS |
[49] R. Arabahmadi, S. Amani, J. Coord Chem. 2013, 66, 218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCrsrvJ&md5=2c9d71303634fc75ded5e091344da500CAS |
[50] J. Li, G. Zhang, D. Zhang, R. Zheng, Q. Shi, D. Zhu, J. Org. Chem. 2010, 75, 5330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVChs7k%3D&md5=f04461c2f6983b9efb344f28229c234aCAS | 20670036PubMed |
[51] A. M. Khedr, M. Gaber, R. M. Issa, H. Erten, Dyes Pigm. 2005, 67, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSmsLo%3D&md5=94efbf1f29f7b2522dcbd9b2d4b31bbeCAS |
[52] E. Ispir, Dyes Pigm. 2009, 82, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Oisbo%3D&md5=6857b2bf09801adfcbeace8e1d6cb763CAS |
[53] W. Likussar, D. F. Boltz, Anal. Chem. 1971, 43, 1265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkvVSqs74%3D&md5=43c91a9463f6f0d7edf737100406d583CAS |
[54] H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXktlCisA%3D%3D&md5=2db2883e0511335fdc0e0e3666ba56eaCAS |
[55] Q. Lin, Q. P. Yang, B. Sun, J. C. Lou, T. B. Wei, Y. M. Zhang, RSC Adv. 2015, 5, 11786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFKntg%3D%3D&md5=0e88cb7709bc477efed33a177e14d9bfCAS |
[56] M. Kumar, J. Nagendra babu, V. Bhalla, N. Singh Athwal, Supramol. Chem. 2007, 19, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wgt7nF&md5=ec4c4dd470b6d2fd4d3a0176194b2733CAS |
[57] J. Xiong, L. Sun, Y. Liao, G. N. Li, J. L. Zuo, X. Z. You, Tetrahedron Lett. 2011, 52, 6157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWmtbfP&md5=12004754d442be81b6dba82f48c02590CAS |
[58] H. W. Richardson, W. E. Hatfield, J. Am. Chem. Soc. 1976, 98, 835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFaht7c%3D&md5=e70872e77d582f9d6cbdf90e400cfdeeCAS |
[59] J. Miller, J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, Sixth Ed. 2014 (Pearson Education Ltd, London).
[60] S. Chall, S. S. Mati, S. Konar, D. Singharoy, S. Chandra Bhattacharya, Org. Biomol. Chem. 2014, 12, 6447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOnsrzK&md5=ab007ceec4ba323b741f8d1e92328f36CAS | 25017315PubMed |
[61] S. Park, K. Hong, J. Hong, H. Kim, Sens. Actuators, B 2012, 174, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFymtbfN&md5=a22c061b74f9867181dd0e6fa8276c9dCAS |