Photoinitiated Synthesis of Sulfides in Water
Sergio A. Rodriguez A , Leandro D. Mena B and Maria T. Baumgartner B CA CITSE (CONICET), Instituto de Ciencias Químicas, UNSE, Av. Belgrano Sur 1912, Santiago del Estero (4200), Argentina.
B INFIQC- Dpto. Qca. Orgánica, Fac. Cs. Químicas, Univ. Nac. Córdoba, Ciudad Universitaria. Córdoba (5000), Argentina.
C Corresponding author. Email: tere@fcq.unc.edu.ar
Australian Journal of Chemistry 69(8) 919-924 https://doi.org/10.1071/CH15496
Submitted: 13 August 2015 Accepted: 16 March 2016 Published: 19 April 2016
Abstract
Herein, we report a synthetic route to obtain aryl sulfides using inexpensive and non-toxic reactants and water as solvent, that avoids the use of catalysts or heating. The photoinduced reaction between soluble substrates and a series of thiols in alkaline aqueous medium produces the corresponding sulfides in moderate to good yields.
References
[1] (a) G. Liu, J. Link, Z. Pei, E. Reilly, S. Leitza, B. Nguyen, K. Marsh, G. Okasinski, T. Von Geldern, M. Ormes, K. Fowler, M. Gallatin, J. Med. Chem. 2000, 43, 4025.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlKgs7Y%3D&md5=a7b221305929821d8d81c3471b3c6fa4CAS | 11052808PubMed |
(b) G. De Martino, M. Edler, G. La Regina, A. Coluccia, M. Barbera, D. Barrow, R. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R. Silvestri, J. Med. Chem. 2006, 49, 947.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Gangjee, Y. Zeng, T. Talreja, J. McGuire, R. Kisliuk, S. Queener, J. Med. Chem. 2007, 50, 3046.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Aiello, G. Wells, E. Stone, H. Kadri, R. Bazzi, D. Bell, M. Stevens, C. Matthews, T. Bradshaw, A. Westwell, J. Med. Chem. 2008, 51, 5135.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Nielsen, E. Nielsen, G. Oslen, T. Liljefors, D. Peters, J. Med. Chem. 2000, 43, 2217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFens7o%3D&md5=79bd6cd0a6b547365ff262ea35d53d26CAS | 10841800PubMed |
(b) G. Liu, J. Huth, E. Olejniczak, R. Mendoza, P. De Vries, S. Leitza, E. B. Reilly, G. Okasinski, S. Fesik, T. von Geldern, J. Med. Chem. 2001, 44, 1202.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Parveen, M. Khan, S. Austin, S. Croft, V. Yardly, P. Rock, K. Douglas, J. Med. Chem. 2005, 48, 8087.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. Dickens, J. Gilday, T. Mowlem, D. Widdowson, Tetrahedron 1991, 47, 8621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFGksA%3D%3D&md5=27590001a9b908f41b41499376a64b5eCAS |
(b) T. Ishiyama, M. Mori, A. Suzuki, N. Miyaura, J. Organomet. Chem. 1996, 525, 225.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Zheng, J. McWilliams, F. Fleitz, J. Armstrong, R. Volante, J. Org. Chem. 1998, 63, 9606.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Mann, D. Baranano, J. Hartwig, A. Reinhold, I. Guzei, J. Am. Chem. Soc. 1998, 120, 9205.
| Crossref | GoogleScholarGoogle Scholar |
(e) U. Schopfer, A. Schlapbach, Tetrahedron 2001, 57, 3069.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. Li, Angew. Chem., Int. Ed. 2001, 40, 1513.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Li, G. Zheng, A. Noonan, J. Org. Chem. 2001, 66, 8677.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Murata, S. Buchwald, Tetrahedron 2004, 60, 7397.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. Mispelaere-Canivet, J. Spindler, S. Perrio, P. Beslin, Tetrahedron 2005, 61, 5253.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. Fernández Rodríguez, Q. Shen, J. Hartwig, J. Am. Chem. Soc. 2006, 128, 2180.
| Crossref | GoogleScholarGoogle Scholar |
(k) C. Eichman, J. Stambuli, J. Org. Chem. 2009, 74, 4005.
| Crossref | GoogleScholarGoogle Scholar |
(l) Z. Jiang, J. She, X. Lin, Adv. Synth. Catal. 2009, 351, 2558.
| Crossref | GoogleScholarGoogle Scholar |
(m) C.-F. Fu, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Tetrahedron 2010, 66, 2119.
| Crossref | GoogleScholarGoogle Scholar |
(n) S. Guo, W. He, J. Xiang, Y. Yuan, Chem. Commun. 2014, 50, 8578.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) V. Percec, J. Bas, D. Hill, J. Org. Chem. 1995, 60, 6895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotlelsLc%3D&md5=bf14d7df90965949d263a03cb3f2044aCAS |
(b) I. Beletskaya, V. Ananikov, Eur. J. Org. Chem. 2007, 3431.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhang, K. Ngeow, J. Ying, Org. Lett. 2007, 9, 3495.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Jammi, P. Barua, L. Rout, P. Saha, T. Punniyamurthy, Tetrahedron Lett. 2008, 49, 1484.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. P. Zhang, D. Vicic, J. Am. Chem. Soc. 2012, 134, 183.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. Gogoi, S. Hazarika, M. J. Sarma, K. Sarma, P. Barman, Tetrahedron 2014, 70, 7484.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) F. Kwong, S. Buchwald, Org. Lett. 2002, 4, 3517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGntLk%3D&md5=f62be5f80311bcbf3917a2eac3022bbeCAS | 12323058PubMed |
(b) C. Bates, P. Saejueng, M. Doherty, D. Venkataraman, Org. Lett. 2004, 6, 5005.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Taniguchi, Synlett 2005, 1687.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Chen, H. Chen, Org. Lett. 2006, 8, 5609.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Rout, T. Sen, T. Punniyamurthy, Angew. Chem., Int. Ed. 2007, 46, 5583.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Ma, Q. Cai, Acc. Chem. Res. 2008, 41, 1450.
| Crossref | GoogleScholarGoogle Scholar |
(g) X. Ku, H. Huang, H. Jiang, H. Liu, J. Comb. Chem. 2009, 11, 338.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. Bhadra, B. Sreedhar, B. Ranu, Adv. Synth. Catal. 2009, 351, 2369.
| Crossref | GoogleScholarGoogle Scholar |
(i) H. Wang, L. Jiang, T. Chen, Y. Li, Eur. J. Org. Chem. 2010, 2324.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. Kabir, M. Lorenz, M. Van Linn, O. Namjoshi, S. Ara, J. Cook, J. Org. Chem. 2010, 75, 3626.
| Crossref | GoogleScholarGoogle Scholar |
(k) L. Niu, Y. Cai, C. Liang, X. Hui, P. Xu, Tetrahedron 2011, 67, 2878.
| Crossref | GoogleScholarGoogle Scholar |
(l) S. Soria-Castro, A. Peñeñory, Beilstein J. Org. Chem. 2013, 9, 467.
| Crossref | GoogleScholarGoogle Scholar |
(m) N. Singh, R. Singh, D. Raghuvanshi, K. Singh, Org. Lett. 2013, 15, 5874.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Wong, T. Jayanth, C. Cheng, Org. Lett. 2006, 8, 5613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlurbL&md5=9beafc84a9a2c615ecc073ee781376feCAS | 17107085PubMed |
[7] (a) A. Correa, M. Carril, C. Bolm, Angew. Chem., Int. Ed. 2008, 47, 2880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVyks7g%3D&md5=61313c77ebf1c9c9d0ca6012406c0114CAS |
(b) W. Wu, J. Wang, F. Tsai, Green Chem. 2009, 11, 326.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Tian, C. Zhu, H. Yang, H. Fu, Chem. Commun. 2014, 50, 8875.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) V. Reddy, K. Swapna, A. Kumar, K. Rao, J. Org. Chem. 2009, 74, 3189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlOisLo%3D&md5=a6867fd6d43289802b8564acac6a2af5CAS | 19296666PubMed |
(b) V. Reddy, A. Kumar, K. Swapna, K. Rao, Org. Lett. 2009, 11, 1697.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) R. K. Norris, J. A. McMahon, ARKIVOC 2003, 2003(x), 139.
(b) J. F. Bunnett, X. Creary, J. Org. Chem. 1974, 39, 3173.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. A. Rossi, A. B. Peñéñory, A. B. Pierini, Chem. Rev. 2003, 103, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVensrw%3D&md5=f71f68d5ea6c486517554a9ddd9db56eCAS | 12517182PubMed |
[11] (a) J. Argüello, L. Schmidt, A. B. Peñeñory, Org. Lett. 2003, 5, 4133.
| Crossref | GoogleScholarGoogle Scholar | 14572267PubMed |
(b) L. Schmidt, V. Rey, A. Peñeñory, Eur. J. Org. Chem. 2006, 2006, 2210.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. C. Schmidt, J. E. Argüello, A. B. Peñéñory, J. Org. Chem. 2007, 72, 2936.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice 1998 (Oxford University Press: New York, NY)
(b) P. Tundo, P. T. Anastas, Green Chemistry: Challenging Perspectives 1999 (Oxford University Press: New York, NY)
(c) Organic Synthesis in Water (Ed. P. A. Grieco) 1998 (Blakie Academic & Professional: London).
[13] For a list of advantages and disadvantages of water as reaction medium see F. Fringuelli, O. Piermatti, E. Pizzo, L. Vaccaro, Eur. J. Org. Chem. 2001, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsVOjuw%3D%3D&md5=375ed0afc7e66cb7a99ec93c603335d9CAS |
[14] (a) M. Cai, R. Xiao, T. Yan, H. Zhao, J. Organomet. Chem. 2014, 749, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOqurvM&md5=739d8913289d82c86be4e9063357a948CAS |
(b) F. Ke, Y. Qu, Z. Jiang, Z. Li, D. Wu, X. Zhou, Org. Lett. 2011, 13, 454.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) See p. 863 in: J. March, Advanced Organic Chemistry, 5th ed. 2001 (Wiley-Interscience, New York, NY)
(b) Y. Yuan, I. Thomé, S. H. Kim, D. Chen, A. J. Bonnamour, E. Zuidema, S. Chang, C. Bolm, Adv. Synth. Catal. 2010, 352, 2892.
| Crossref | GoogleScholarGoogle Scholar |
[16] T. Tempesti, A. B. Pierini, M. T. Baumgartner, J. Org. Chem. 2005, 70, 6508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWiu7w%3D&md5=98774e6bcbaf68ec361bdc87e9055d5fCAS | 16050719PubMed |
[17] By precipitation at pH = 6 in the reaction workup.
[18] W. Fang, Y. Cheng, Y. Cheng, Y. A. Cherng, Tetrahedron 2005, 61, 3107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2rtL8%3D&md5=457f6b7ed62964e7b80be661556b4246CAS |
[19] Y. Maeda, M. Koyabu, T. Nishimura, S. Uemura, J. Org. Chem. 2004, 69, 7688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Wnsbg%3D&md5=4632711b999c79579210680266bf83caCAS | 15497997PubMed |
[20] G. Blanco, M. T. Baumgartner, Tetrahedron Lett. 2011, 52, 7061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqsrjF&md5=31cddd795eaf3c5492ef3ce16b63d17aCAS |
[21] (a) J. S. Bradshaw, R. H. Hales, J. Org. Chem. 1971, 36, 318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltleitw%3D%3D&md5=950bfd7a2408d9aa95fc9d6ec2077f0aCAS |
(b) R. H. Hales, J. S. Bradshaw, D. R. Pratt, J. Org. Chem. 1971, 36, 314.
| Crossref | GoogleScholarGoogle Scholar |
[22] N. M. Goudgaon, N. M. Naguib, M. H. Kouni, R. F. Schinazi, J. Med. Chem. 1993, 36, 4250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlCns7g%3D&md5=fa47d304615e6f1775be9ef9ba677df0CAS | 8277507PubMed |
[23] D. Szabó, I. Kapovits, A. Kucsman, P. Nagy, G. Argay, A. Kalman, J. Mol. Struct. 1999, 476, 157.
| Crossref | GoogleScholarGoogle Scholar |