Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Structural Characterization of a Series of Group 11 2,2-Dialkyl-1,3-dicyclohexylguanidinate Complexes

Sonya K. Adas A , Jesus A. Ocana A and Scott D. Bunge A B
+ Author Affiliations
- Author Affiliations

A Kent State University, Department of Chemistry and Biochemistry, Kent OH 44242, USA.

B Corresponding author. Email: sbunge@kent.edu

Australian Journal of Chemistry 67(7) 1021-1029 https://doi.org/10.1071/CH14134
Submitted: 11 March 2014  Accepted: 16 April 2014   Published: 4 June 2014

Abstract

The addition of either lithium dimethylamide or lithium diethylamide to a tetrahydrofuran (THF) solution of 1,3-dicyclohexylcarbodiimide yielded THF adducts of lithium 2,2-dimethyl-1,3-dicyclohexylguandidinate (1) and lithium 2,2-diethyl-1,3-dicyclohexylguandidinate (2), respectively. One equivalent of either 1 or 2 was subsequently reacted with one equivalent of Group 11 halide (CuCl, AgBr, and AuCl) to generate oligonuclear complexes with the general formula {M[CyNC(NR2)NCy]}n where M, R, and n are respectively Cu, CH3, 2 (3); Cu, CH2CH3, 2 (4); Ag, CH3, 3 (5); Ag, CH2CH3, 3 (6); Au, CH3, 2 (7); and Au, CH2CH3, 2 (8). Compounds 18 were characterized by single-crystal X-ray diffraction. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, Fourier transform infrared spectroscopy, and 1H, 13C, and 7Li NMR studies. The unique structural aspects of this family of Group 11 complexes are highlighted.


References

[1]  I. Pattison, K. Wade, B. K. Wyatt, J. Chem. Soc. A 1968, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXpsFCmsw%3D%3D&md5=f8a03cbba842f39e0c48c6e70b031f6cCAS |

[2]  W. Schneider, A. Bauer, A. Schier, H. Schmidbaur, Chem. Ber. 1997, 130, 1417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVWhsLg%3D&md5=98262c6137181c752249ff004744e007CAS |

[3]  N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, Z. Anorg. Allg. Chem. 1997, 623, 554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Glt7s%3D&md5=81a1f17f9444a8cb367454488af759bcCAS |

[4]  N. De Vries, C. E. Costello, A. G. Jones, A. Davison, Inorg. Chem. 1990, 29, 1348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslWjsbg%3D&md5=c1e738ba2103a9d895e494487bc6cd14CAS |

[5]  M. A. Paver, D. S. Wright, D. Stalke, Angew. Chem. Int. Ed. Engl. 1993, 32, 428.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  W. Clegg, R. Snaith, H. M. M. Shearer, K. Wade, G. Whitehead, J. Chem. Soc., Dalton Trans. 1983, 1309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVerurk%3D&md5=59bfc0333481eea2b72a6b10947a5530CAS |

[7]  W. Clegg, R. E. Mulvey, R. Snaith, G. E. Toogood, K. Wade, J. Chem. Soc. Chem. Commun. 1986, 1740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXpsVyqsA%3D%3D&md5=5537d00d48d867275749dffbea8b13e5CAS |

[8]  A. J. Edwards, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell, D. S. Wright, J. Chem. Soc., Dalton Trans. 1995, 1587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFeiurY%3D&md5=c0f79b004c235a9f63d1bc26171dc521CAS |

[9]  R. Longhi, R. S. Drago, Inorg. Chem. 1965, 4, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXitVCiug%3D%3D&md5=634a2c70165a372bc7c21bacda4c216eCAS |

[10]  P. J. Bailey, S. Pace, Coord. Chem. Rev. 2001, 214, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslemsbg%3D&md5=09edc379a402080417babbec943e6769CAS |

[11]  A. R. Cowley, A. J. Downs, H. J. Himmel, S. Marchant, S. Parsons, J. A. Yeoman, Dalton Trans. 2005, 1591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFKgsbw%3D&md5=2d2170ff1fbec6bfa59743dbbf902f21CAS | 15852107PubMed |

[12]  M. P. Coles, Dalton Trans. 2006, 985.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktL0%3D&md5=c724b6e2ad92741d2f760dcc9f8969b1CAS | 16474883PubMed |

[13]  F. T. Edelmann, in Recent Progress in the Chemistry of Metal Amidinates, Guanidinates: Syntheses, Catalysis, Materials (Eds A. F. Hill, M. J. Fink) 2013, Vol. 61, pp. 55–374 (Elsevier Academic Press Inc: San Diego, CA).

[14]  M. P. Coles, Chem. Commun. 2009, 3659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslentLw%3D&md5=0bef196c004b3565f30822ca276ed1f9CAS |

[15]  F. T. Edelmann, in Advances in the Coordination Chemistry of Amidinate, Guanidinate Ligands (Eds A. F. Hill, M. J. Fink) 2008, Vol. 57, p. 183–352 (Elsevier Academic Press Inc: San Diego, CA).

[16]  A. Gobbi, G. Frenking, J. Am. Chem. Soc. 1993, 115, 2362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFSrtb8%3D&md5=5fee13731495f3b51ac109726e09d608CAS |

[17]  R. Kempe, Angew. Chem. Int. Ed. 2000, 39, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlagu78%3D&md5=3ce10c0ba0e1ffd429703b63b0d6d448CAS |

[18]  T. J. J. Whitehorne, J. P. Coyle, A. Mahmood, W. H. Monillas, G. P. A. Yap, S. T. Barry, Eur. J. Inorg. Chem. 2011, 3240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlKhtLc%3D&md5=47d432aa3f59bf3f048a2bd5a3946ef0CAS |

[19]  T. Kim, Y. Yao, J. P. Coyle, S. T. Barry, F. Zaera, Chem. Mater. 2013, 25, 3630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjsLrN&md5=efe3a3af49dd638f19057c8a2d630153CAS |

[20]  M. D. Irwin, H. E. Abdou, A. A. Mohamed, J. P. Fackler, Chem. Commun. 2003, 2882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWksLo%3D&md5=41cb9be0eec0c43708fd1e8faaab6813CAS |

[21]  H. E. Abdou, A. A. Mohamed, J. P. Fackler, Inorg. Chem. 2007, 46, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12lsLvN&md5=972c8b8bc3af3a66956034bf4e86ba21CAS | 17198422PubMed |

[22]  A. A. Mohamed, A. P. Mayer, H. E. Abdou, M. D. Irwin, L. M. Perez, J. P. Fackler, Inorg. Chem. 2007, 46, 11165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWqsLzF&md5=717b76095e3d986bb126fe1e1945687bCAS | 18020445PubMed |

[23]  A. A. Mohamed, H. E. Abdou, A. Mayer, J. P. Fackler, J. Clust. Sci. 2008, 19, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2gur%2FP&md5=486a3182d9db14a19cb6e36173b09c67CAS |

[24]  J. P. Coyle, P. A. Johnson, G. A. DiLabio, S. T. Barry, J. Müller, Inorg. Chem. 2010, 49, 2844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGqu7Y%3D&md5=5a67573bedbf4d6a88a37ade0e4e4976CAS | 20151641PubMed |

[25]  J. A. Bertke, S. D. Bunge, Dalton Trans. 2007, 4647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrtr7O&md5=a19e3fef367feb3e2b4b11cf49636b99CAS | 17940644PubMed |

[26]  S. D. Bunge, J. M. Lance, J. A. Bertke, Organometallics 2007, 26, 6320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KisbbM&md5=c535d9167a92c1a8a7e39b3344da0040CAS |

[27]  T. L. Cleland, S. D. Bunge, Polyhedron 2007, 26, 5506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Giu7vN&md5=f2d612e79eb959987890be4dc6758bfbCAS |

[28]  S. D. Bunge, J. A. Bertke, T. L. Cleland, Inorg. Chem. 2009, 48, 8037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVelsL0%3D&md5=d8477a2d7aed927a74ed00eaceed36e8CAS | 19624099PubMed |

[29]  S. D. Bunge, J. A. Ocana, T. L. Cleland, J. L. Steele, Inorg. Chem. 2009, 48, 4619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVyktL8%3D&md5=8b4dac060237973cc13dcdf6feae9dbaCAS | 19388654PubMed |

[30]  T. E. Janini, R. Rakosi, C. B. Durr, J. A. Bertke, S. D. Bunge, Dalton Trans. 2009, 10601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtLzK&md5=303361c9ba210d87d560e72b389df907CAS | 20023885PubMed |

[31]  J. D. Monegan, S. D. Bunge, Inorg. Chem. 2009, 48, 3248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kltr0%3D&md5=e52659f2dcd4d3e5a8e434e6b505bb94CAS | 19239201PubMed |

[32]  A. M. Willcocks, T. P. Robinson, C. Roche, T. Pugh, S. P. Richards, A. J. Kingsley, J. P. Lowe, A. L. Johnson, Inorg. Chem. 2012, 51, 246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ajsbjO&md5=aab6f91e1cbcd90a254f472b6a0067bbCAS | 22168209PubMed |

[33]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |

[34]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1998, B37, 785.

[35]  A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXotlSrtQ%3D%3D&md5=9a94418800b35fd914ef09bdee83ad16CAS |

[36]  P. J. Hay, J. Chem. Phys. 1977, 66, 4377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksVCntb0%3D&md5=eaab40fab95c830bd82fcf632e1baee4CAS |

[37]  A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFSisLY%3D&md5=aceb541a1fe9d5614d3d50316f774022CAS |

[38]  Spartan ‘04 for Windows 2004 (Wavefunction, Inc.: Irvine, CA).

[39]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.11.2 2001 (Gaussian, Inc.: Pittsburgh, PA).

[40]  E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1 1996 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI)

[41]  H. Shen, H. S. Chan, Z. W. Xie, Organometallics 2006, 25, 5515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOiu7nL&md5=d9469ef635f2cfbdf62356db7e8d5047CAS |

[42]  M. K. T. Tin, G. P. A. Yap, D. S. Richeson, Inorg. Chem. 1999, 38, 998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFagtrk%3D&md5=7a8eba56e506e996130d09c95b0c2d46CAS |

[43]  A. Baunemann, M. Winter, K. Csapek, C. Gemel, R. A. Fischer, Eur. J. Inorg. Chem. 2006, 4665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnsr3L&md5=50906cce7ea7cee98cb793d86d53d8dbCAS |

[44]  H. Hao, C. Cui, G. Bai, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, Y. Ding, Z. Anorg. Allg. Chem. 2000, 626, 1660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltV2ltr4%3D&md5=51ede7467b4feaf99efe3740edcfea6dCAS |

[45]  X.-A. Pang, Y.-M. Yao, J.-F. Wang, H.-T. Sheng, Y. Zhang, Q. Shen, Chin. J. Chem. 2005, 23, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSkt7vM&md5=5ae5d5cc2ca616b9aa0230298d828797CAS |

[46]  Y. Zhang, M. Wang, Y. Yao, Q. Shen, Chin. Sci. Bull. 2005, 50, 2817.
         | 1:CAS:528:DC%2BD28XhsVertbs%3D&md5=591a32a4e7c55961754b0b7c9728913aCAS |

[47]  H. Shen, H.-S. Chan, Z. Xie, J. Am. Chem. Soc. 2007, 129, 12934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWksbnM&md5=6aceae4f98df63f39cfc37effb054237CAS | 17918846PubMed |

[48]  J.-F. Sun, X.-T. Chen, Z.-L. Xue, Inorg. Chim. Acta 2009, 362, 4251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1SqtLo%3D&md5=04e892e63916fa85bb1e0ed7b4573d49CAS |

[49]  T. K. Panda, H. Tsurugi, K. Pal, H. Kaneko, K. Mashima, Organometallics 2010, 29, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensLvL&md5=9c645605dcb204dfde8191e4db79e364CAS |

[50]  B. Sharma, S.-J. Chen, J. K. C. Abbott, X.-T. Chen, Z.-L. Xue, Inorg. Chem. 2012, 51, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ajsL3P&md5=cfe3a630033fd123aacf684e79a918e5CAS | 22168235PubMed |

[51]  G. R. Giesbrecht, A. Shafir, J. Arnold, J. Chem. Soc., Dalton Trans. 1999, 3601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Cmt7c%3D&md5=092b2abf97dbc443637d7ddfaa6292ddCAS |

[52]  D. Rudolf, E. Kaifer, H. J. Himmel, Eur. J. Inorg. Chem. 2010, 4952.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlalu7vJ&md5=11194b6217b32e3198486b7a5f3b57e6CAS |

[53]  H. F. Han, W. J. Li, H. Y. Li, Acta Crystallogr. E 2010, E66, m1579.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  X. A. Pang, Y. M. Yao, J. F. Wang, H. T. Sheng, Y. Zhang, Q. Shen, Chin. J. Chem. 2005, 23, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSkt7vM&md5=5ae5d5cc2ca616b9aa0230298d828797CAS |

[55]  C. L. Boyd, B. R. Tyrrell, P. Mountford, Acta Crystallogr. E 2002, E58, m597.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  C. F. Caro, P. B. Hitchcock, M. F. Lappert, M. Layh, Chem. Commun. 1998, 12, 1297.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
         | Crossref | GoogleScholarGoogle Scholar | 17308676PubMed |

[58]  F. A. Cotton, X. J. Feng, D. J. Timmons, Inorg. Chem. 1998, 37, 4066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2jurs%3D&md5=bcbef19569119723b57b9f49fc27119cCAS | 11670525PubMed |

[59]  F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advances in Inorganic Chemistry 1999 (Wiley-Interscience: New York, NY).

[60]  B. S. Lim, A. Rahtu, J. S. Park, R. G. Gordon, Inorg. Chem. 2003, 42, 7951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVSnt7g%3D&md5=e2542b4d170f34877c4cfdc7746cb430CAS | 14632513PubMed |

[61]  J. P. Coyle, W. H. Monillas, G. P. A. Yap, S. T. Barry, Inorg. Chem. 2008, 47, 683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsbzE&md5=e3a3dab8399c6ae16fe63b591ff0e612CAS | 18095672PubMed |

[62]  Z. W. Li, S. T. Barry, R. G. Gordon, Inorg. Chem. 2005, 44, 1728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlShsg%3D%3D&md5=595a530fa741ae0abd4d3edee1f29cf5CAS |

[63]  S. Patai, Z. Rappoport, The Chemistry of Amidines and Imidinates (2) 1991 (Wiley: New York, NY).

[64]  M. P. Coles, P. B. Hitchcock, Organometallics 2003, 22, 5201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1aqurY%3D&md5=b1f986593bafedc69baf4182d1eb66c6CAS |

[65]  C. Jones, C. Schulten, L. Fohlmeister, A. Stasch, K. S. Murray, B. Moubaraki, S. Kohl, M. Z. Ertem, L. Gagliardi, C. J. Cramer, Chem. Eur. J. 2011, 17, 1294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVSktg%3D%3D&md5=67e654e0523ab80d6b9039fb62087bcfCAS | 21243697PubMed |