Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Development of Novel Guanidine–Bisurea Bifunctional Organocatalysts and their Application to Asymmetric α-Hydroxylation of Tetralone-derived β-Keto Esters

Minami Odagi A , Kan Takayama A , Kota Furukori A , Tatsuya Watanabe A and Kazuo Nagasawa A B
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City, 184-8588 Tokyo, Japan.

B Corresponding author. Email: knaga@cc.tuat.ac.jp

Australian Journal of Chemistry 67(7) 1017-1020 https://doi.org/10.1071/CH14144
Submitted: 13 March 2014  Accepted: 16 April 2014   Published: 28 May 2014

Abstract

A series of guanidine–bisurea bifunctional organocatalysts 4, with chiral centres located outside the urea groups, were synthesized. The novel catalyst 4 is conformationally more flexible than the original catalyst 1. In α-hydroxylation of tetralone- derived β-keto esters, 4 afforded the corresponding alcohols in high yields with moderate enantioselectivity.


References

[1]  J. Christoffers, A. Baro, T. Werner, Adv. Synth. Catal. 2004, 346, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1ensb4%3D&md5=8f929c454b33eb682da66b9fc772e2ceCAS |

[2]  (a) For reviews for α-hydroxylation of 1,3-dicarbonyl compounds, see: F. A. Davis, B. C. Chen, Chem. Rev. 1992, 92, 919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvV2mtbg%3D&md5=bacce6d6845d60d4b894c94b13b44668CAS |
      (b) A. M. R. Smith, K. K. Hii, Chem. Rev. 2011, 111, 1637.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Russo, C. De Fusco, A. Lattanzi, RSC Adv 2012, 2, 385.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) For catalytic asymmetric α-hydroxylation of 1,3-dicarbonyl compounds using metal complexes as catalysts, see: P. Y. Toullec, C. Bonaccorsi, A. Mezzetti, A. Togni, Proc. Natl. Acad. Sci. USA 2004, 101, 5810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKgu7o%3D&md5=944b394bf49bcb183ba34f6a3b13a146CAS | 15071186PubMed |
      (b) T. Ishimaru, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, J. Am. Chem. Soc. 2006, 128, 16488.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. S. Reddy, N. Shibata, J. Nagai, S. Nakamura, T. Toru, Angew. Chem. Int. Ed. 2009, 48, 803.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. M. R. Smith, D. Billen, K. K. Hii, Chem. Commun. 2009, 26, 3925.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. M. R. Smith, H. S. Rzepa, A. J. P. White, D. Billen, K. K. Hii, J. Org. Chem. 2010, 75, 3085.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. J. Jiang, J. Huang, D. Wang, M. X. Zhao, F. J. Wang, M. Shi, Tetrahedron Asymmetry 2010, 21, 794.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. H. Cao, M. Shi, Tetrahedron Asymmetry 2010, 21, 2675.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Li, G. Chen, Z. Wang, R. Zhang, K. Ding, Chem. Sci 2011, 2, 1141.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Takechi, N. Kumagai, M. Shibasaki, Tetrahedron Lett. 2011, 52, 2140.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) C. Yin, W. Cao, L. Lin, X. Liu, X. Feng, Adv. Synth. Catal. 2013, 355, 1924.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) For catalytic asymmetric α-hydroxylation of 1,3-dicarbonyl compounds using organocatalysts, see: M. R. Acocella, O. G. Mancheco, M. Bella, K. A. Jørgensen, J. Org. Chem. 2004, 69, 8165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslSgtr8%3D&md5=a8b093e3f8c2b7812fb8a115f062c5e5CAS | 15527315PubMed |
      (b) M. Lu, Y. Lu, X. Zeng, B. Tan, Z. Xu, G. Zhong, J. Am. Chem. Soc. 2009, 131, 4562.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Gong, Q. Meng, T. Su, M. Lian, Q. Wang, Z. Gao, Synlett 2009, 2659.
      (d) M. Lian, Z. Li, J. Du, Q. Meng, Z. Gao, Eur. J. Org. Chem. 2010, 2010, 6525.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Yao, M. Lian, Z. Li, Y. Wang, Q. Meng, J. Org. Chem. 2012, 77, 9601.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Cai, M. Lian, Z. Li, Q. Meng, Tetrahedron 2012, 68, 7973.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Lian, Z. Li, Y. Gai, Q. Meng, Z. Gao, Chem. Asian J. 2012, 7, 2019.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) L. Zou, B. Wang, H. Mu, H. Zhang, Y. Song, J. Qu, Org. Lett. 2013, 15, 3106.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) C. De Fusco, S. Meninno, C. Tedesco, A. Lattanzi, Org. Biomol. Chem. 2013, 11, 896.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) For our reports on guanidine–bis(thio)urea bifunctional organocatalysts, see: Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 2005, 347, 1643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ansLrK&md5=556b61c5146d5293160b605ba1c72ef4CAS |
      (b) Y. Sohtome, N. Takemura, T. Iguchi, Y. Hashimoto, K. Nagasawa, Synlett 2006, 144.
      (c) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Eur. J. Org. Chem. 2006, 2894.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Sohtome, N. Takemura, T. Takada, R. Takagi, T. Iguchi, K. Nagasawa, Chem. Asian J. 2007, 2, 1150.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K. Takada, N. Nagasawa, Adv. Synth. Catal. 2009, 351, 345.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Tanaka, K. Nagasawa, Synlett 2009, 667.
      (g) K. Takada, S. Tanaka, K. Nagasawa, Synlett 2009, 1643.
      (h) Y. Sohtome, B. Shin, N. Horitsugi, R. Takagi, K. Noguchi, K. Nagasawa, Angew. Chem. Int. Ed. 2010, 49, 7299.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) T. Sohtome, S. Tanaka, K. Takada, T. Yamaguchi, K. Nagasawa, Angew. Chem. Int. Ed. 2010, 49, 9254.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) T. Sohtome, B. Shin, N. Horitsugi, K. Noguchi, K. Nagasawa, Chem. Asian J. 2011, 6, 2463.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) Y. Sohtome, N. Horitsugi, R. Takagi, K. Nagasawa, Adv. Synth. Catal. 2011, 353, 2631.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) Y. Sohtome, Y. Yamaguchi, B. Shin, K. Nagasawa, Chem. Lett. 2011, 40, 843.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) Y. Sohtome, K. Nagasawa, Chem. Commun. 2012, 48, 7777.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) Y. Sohtome, T. Yamaguchi, S. Tanaka, K. Nagasawa, Org. Biomol. Chem. 2013, 11, 2780.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) M. Odagi, K. Furukori, T. Watanabe, K. Nagasawa, Chem. Eur. J. 2013, 19, 16740.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) T. Watanabe, M. Odagi, K. Furukori, K. Nagasawa, Chem. Eur. J. 2014, 20, 591.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Bartoli, K. B. Jensen, J. D. Kilburn, J. Org. Chem. 2003, 68, 9416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlaqtb4%3D&md5=2c42ae0aa56b5acb0afb1effb33b21c8CAS | 14629167PubMed |