Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Phyto-oestrogens affect fertilisation and embryo development in vitro in sheep

Anna Aryani Amir A B C , Jennifer M. Kelly D , David O. Kleemann D , Zoey Durmic A B , Dominique Blache A B and Graeme B. Martin A B
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.

B UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia.

C Institut Pertanian Tropika dan Sekuriti Makanan, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.

D South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, SA 5350, Australia.

E Corresponding author. Email: graeme.martin@uwa.edu.au

Reproduction, Fertility and Development 30(8) 1109-1115 https://doi.org/10.1071/RD16481
Submitted: 29 November 2016  Accepted: 22 December 2017   Published: 16 February 2018

Abstract

Phyto-oestrogens such as isoflavones are natural compounds that can profoundly affect reproductive function. In the present study, we tested whether including isoflavone compounds (genistein, biochanin A, formononetin) in the maturation medium would affect the outcomes for ovine oocytes in vitro. Each isoflavone compound was evaluated at five concentrations (0, 2.5, 5, 10, 25 µg mL−1) and the entire protocol was repeated four times. Cumulus–oocyte complexes were randomly allocated to the treatments, then fertilised and cultured in vitro. Compared with control (0 µg mL−1), the lower concentrations of isoflavone (2.5, 5 and 10 µg mL−1) had no detectable effect on the rates of cleavage or embryo development, or on embryo total cell counts (TCC). However, the highest concentration (25 µg mL−1) of all three isoflavones exerted a variety of effects (P < 0.05): genistein decreased cleavage rate, blastocyst rate and blastocyst efficiency (blastocysts produced per 100 oocytes); biochanin A decreased cleavage rate and blastocyst efficiency; and formononetin decreased blastocyst rate and blastocyst efficiency. Biochanin A (25 µg mL−1) reduced embryo TCC specifically at the hatched blastocyst stage (P < 0.05). We conclude that the presence of isoflavones at 25 µg mL−1 during IVM decreases the cleavage rate and inhibits blastocyst hatching.

Additional keywords: biochanin A, blastocyst, formononetin, genistein, oocytes.


References

Adams, N. R. (1995). Detection of the effects of phytoestrogens on sheep and cattle. J. Anim. Sci. 73, 1509–1515.
Detection of the effects of phytoestrogens on sheep and cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFSju7w%3D&md5=c2abc4fc599a9b845a333ab62988e207CAS |

Adams, N. R., and Martin, G. B. (1983). Effects of oestradiol on plasma concentrations of luteinizing hormone in ovariectomized ewes with clover disease. Aust. J. Biol. Sci. 36, 295–303.
Effects of oestradiol on plasma concentrations of luteinizing hormone in ovariectomized ewes with clover disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1Cmtbc%3D&md5=7d955bb716d3534d55eaf4e4c45fd35fCAS |

Armstrong, D. T., Zhang, X., Vanderhyden, B. C., and Khamsi, F. (1991). Hormonal actions during oocyte maturation influence fertilization and early embryonic development. Ann. N. Y. Acad. Sci. 626, 137–158.
Hormonal actions during oocyte maturation influence fertilization and early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFylsrc%3D&md5=4eb618e8af157831f5a888f4760ea2caCAS |

Baber, R. (2010). Phytoestrogens and post reproductive health. Maturitas 66, 344–349.
Phytoestrogens and post reproductive health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWhsb4%3D&md5=0a97d5e8575f7af2e1b0b09828f09e0eCAS |

Bavister, B. D., Rose-Hellekant, T. A., and Pinyopummintr, T. (1992). Development of in vitro matured/in vitro fertilized bovine embryos into morulae and blastocysts in defined culture media. Theriogenology 37, 127–146.
Development of in vitro matured/in vitro fertilized bovine embryos into morulae and blastocysts in defined culture media.Crossref | GoogleScholarGoogle Scholar |

Bickell, S. L., Durmic, Z., Blache, D., Vercoe, P. E., and Martin, G. B. (2010). Rethinking the management of health and reproduction in small ruminants. Updates on ruminant production and medicine. In ‘Proceedings of the 26th World Buiatric Congress’, 4–18 November 2010, Santiago, Chile. (Eds F.R.C. Wittwer, H. Contreras, C. Gallo, J. Kruze, F. Lanuza, C. Letelier, G. Monti, and M. Noro.) p. 317–325. (Andros Impresores: Santiago, Chile.)

Brower, P. T., and Schultz, R. M. (1982). Intercellular communication between granulosa cells and mouse oocyte: existence and possible nutritional role during oocyte growth. Dev. Biol. 90, 144–153.
Intercellular communication between granulosa cells and mouse oocyte: existence and possible nutritional role during oocyte growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387jvFOrsQ%3D%3D&md5=86627fd7f2e00eda71ee6148d2ac2fb5CAS |

Chiaratti, M. R., Ferreira, C. R., Perecin, F., Meo, S. C., Sangalli, J. R., Mesquita, L. G., Belieiro, J. C. C., Smith, L. C., Garcia, J. M., Garcia, J. M., and Meirelles, F. V. (2011). Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reprod. BioMed. Online 22, 172–183.
Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12rsLk%3D&md5=3bbc807c19ecb6855150b3fee6177768CAS |

de Loos, F., Kastrop, P., Van Maurik, P., Van Beneden, T. H., and Kruip, T. A. (1991). Heterologous cell contacts and metabolic coupling in bovine cumulus oocyte complexes. Mol. Reprod. Dev. 28, 255–259.
Heterologous cell contacts and metabolic coupling in bovine cumulus oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7pslGjsA%3D%3D&md5=e919cc83b835d0ea4da42e1adebe1148CAS |

Durmic, Z., and Blache, D. (2012). Bioactive plants and plant products: effect on animal function, health and welfare. Anim. Feed Sci. Technol. 176, 150–162.
Bioactive plants and plant products: effect on animal function, health and welfare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyksLbK&md5=2c04a38d2f50607086d8f8991db9e8a7CAS |

Durmic, Z., Hutton, P. G., Murray, K., and Vercoe, P. E. (2012). Inclusion of selected levels of Australian native plant Eremophila glabra in fermentation substrate can influence events leading to rumen lactic acidosis in in vitro and in vivo carbohydrate-challenged system. Anim. Feed Sci. Technol. 178, 57–66.
Inclusion of selected levels of Australian native plant Eremophila glabra in fermentation substrate can influence events leading to rumen lactic acidosis in in vitro and in vivo carbohydrate-challenged system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2htrnK&md5=142986e6e665f93645357e9c2dc8479fCAS |

Guillette, L. J., and Moore, B. C. (2006). Environmental contaminants, fertility, and multioocytic follicles: a lesson from wildlife? Semin. Reprod. Med. 24, 134–141.
Environmental contaminants, fertility, and multioocytic follicles: a lesson from wildlife?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFGgs7s%3D&md5=5e52ae5c1a0d6704a4fc18ed95915352CAS |

Hardarson, T., Caisander, G., Sjögren, A., Hanson, C., Hamberger, L., and Lundin, K. (2003). A morphological and chromosomal study of blastocysts developing from morphologically suboptimal human pre‐embryos compared with control blastocysts. Hum. Reprod. 18, 399–407.
A morphological and chromosomal study of blastocysts developing from morphologically suboptimal human pre‐embryos compared with control blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1yrtLw%3D&md5=926461600b5d7ebef5c03ac8e0f7c705CAS |

Iguchi, T., Fukazawa, Y., Uesugi, Y., and Takasugi, N. (1990). Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro. Biol. Reprod. 43, 478–484.
Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVGmsLg%3D&md5=6df35d445dfa57d7bb165fef5fc35163CAS |

Jefferson, W. N., Padilla-Banks, E., and Newbold, R. R. (2007). Disruption of the developing female reproductive system by phytoestrogens: genistein as an example. Mol. Nutr. Food Res. 51, 832–844.
Disruption of the developing female reproductive system by phytoestrogens: genistein as an example.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OjtLc%3D&md5=ec5120a6e8c6cef25528bbba3dfd3886CAS |

Kaldas, R. S., and Hughes, C. L. (1989). Reproductive and general metabolic effects of phytoestrogens in mammals. Reprod. Toxicol. 3, 81–89.
Reproductive and general metabolic effects of phytoestrogens in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFWksLo%3D&md5=6980ee73e184d23cdef68747c98b9017CAS |

Kelly, J. M., Kleemann, D. O., Rudiger, S. K., and Walker, S. K. (2007). Effects of grade of oocyte–cumulus complex on the interactions between grades on the production of blastocysts in the cow, ewe and lamb. Reprod. Domest. Anim. 42, 577–582.
Effects of grade of oocyte–cumulus complex on the interactions between grades on the production of blastocysts in the cow, ewe and lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGqu7vL&md5=283aabc4216f8962c6f097c987f58822CAS |

Kotwicka, M., Skibinska, I., Jendraszak, M., and Jedrzejczak, P. (2016). 17β-Estradiol modifies human spermatozoa mitochondrial function in vitro. Reprod. Biol. Endocrinol. 14, 50.
17β-Estradiol modifies human spermatozoa mitochondrial function in vitro.Crossref | GoogleScholarGoogle Scholar |

Kotze, A. C., O’Grady, J. O., Emms, J., Toovey, A. F., Hughes, S., Jessop, P., Bennell, M. R., Vercoe, P. E., and Revell, D. K. (2009). Exploring the anthelmintic properties of Australian native shrubs with respect to their potential role in livestock grazing systems. Parasitology 136, 1065–1080.
Exploring the anthelmintic properties of Australian native shrubs with respect to their potential role in livestock grazing systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MvotVOqsw%3D%3D&md5=2b95e80d652d1d6d752f99425d972c59CAS |

Kovacic, B., Vlaisavljevic, V., Reljic, M., and Cizek-Sajko, M. (2004). Developmental capacity of different morphological types of Day 5 human morulae and blastocysts. Reprod. Biomed. Online 8, 687–694.
Developmental capacity of different morphological types of Day 5 human morulae and blastocysts.Crossref | GoogleScholarGoogle Scholar |

Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=4656a8f9e209f95c349200e1975ca581CAS |

Leite, S. P., de Medeiros, P. L., da Silva, E. C., de Souza Maia, M. B., de Menezes Lima, V. L., and Saul, D. E. (2004). Embryotoxicity in vitro with extract of Indigofera suffruticosa leaves. Reprod. Toxicol. 18, 701–705.
Embryotoxicity in vitro with extract of Indigofera suffruticosa leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2qsLg%3D&md5=cc971dd2dfa453bd9aa148ee4327dbe8CAS |

Li, X., Durmic, Z., Liu, S., McSweeney, C. S., and Vercoe, P. E. (2014). Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec. Anaerobe 29, 100–107.
Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKis7nM&md5=77807ca25a91a0c58b4a58c46def6f87CAS |

Lightfoot, R. J., Smith, J. F., Cumming, I. A., Marshall, T., Wroth, R. H., and Hearnshaw, H. (1974). Unfertility in ewes caused by prolonged grazing on oestrogenic pastures: oestrus, fertilization and cervical mucus. Aust. J. Biol. Sci. 27, 409–414.
Unfertility in ewes caused by prolonged grazing on oestrogenic pastures: oestrus, fertilization and cervical mucus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2FlsVSisA%3D%3D&md5=67d08cef6e72e6970e9226730b1281b0CAS |

Lin, D. P. C., Huang, C. C., Wu, H. M., Cheng, T. C., Chen, C. I., and Lee, M. S. (2004). Comparison of mitochondrial DNA contents in human embryos with good or poor morphology at the 8-cell stage. Fertil. Steril. 81, 73–79.
Comparison of mitochondrial DNA contents in human embryos with good or poor morphology at the 8-cell stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFCrs7o%3D&md5=3ef4de723d6ffd2dfce0b15521d254d0CAS |

Lindsay, D. R., and Kelly, R. W. (1970). The metabolism of phyto-oestrogens in sheep. Aust. Vet. J. 46, 219–222.
The metabolism of phyto-oestrogens in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvVChu78%3D&md5=9894a338c767dcff86b467be2c6e0acdCAS |

Lundh, T. J. O., Petterson, H., and Marinsson, K. A. (1990). Comparative levels of free and conjugated plant estrogen in blood plasma of sheep and cattle fed estrogenic silage. J. Agric. Food Chem. 38, 1530–1534.
Comparative levels of free and conjugated plant estrogen in blood plasma of sheep and cattle fed estrogenic silage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2jt7c%3D&md5=4873dc4a98873231888103b37b0e481dCAS |

McEvoy, T. G., Robinson, J. J., Ashworth, C. J., Rooke, J. A., and Sinclair, K. D. (2001). Feed and forage toxicants affecting embryo survival and fetal development. Theriogenology 55, 113–129.
Feed and forage toxicants affecting embryo survival and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslOrsA%3D%3D&md5=2acbd72abef0861a3b1b9084238798dfCAS |

Newmark, J. A., William, C., Chang, W., Herrera, C. C., Brooks, G. E., Di, D. H., Marzio, C. A., and Warner, C. M. (2007). Determination of the number of cells in preimplantation embryos by using noninvasive optical quadrature microscopy in conjunction with differential interference contrast microscopy. Microsc. Microanal. 13, 118–127.
Determination of the number of cells in preimplantation embryos by using noninvasive optical quadrature microscopy in conjunction with differential interference contrast microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Gqs7c%3D&md5=1c57bc8e0a4c46bdcdc1ae9639ff3455CAS |

Payne, S. E., Kotze, A. C., Durmic, Z., and Vercoe, P. E. (2013). Australian plants show anthelmintic activity towards equine cyathostomins in vitro. Vet. Parasitol. 196, 153–160.
Australian plants show anthelmintic activity towards equine cyathostomins in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVGgtrc%3D&md5=933d9e2bf7b6b74fe3eac7256803b4f2CAS |

Petro, E. M., Leroy, J. L., Covaci, A., Fransen, E., De Neubourg, D., Dirtu, A. C., De Pauw, I., and Bols, P. E. (2012). Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence. Hum. Reprod. 27, 1025–1033.
Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVartr8%3D&md5=a342b5bc19560e10fbab0514fb8acbcdCAS |

Piasecka-Srader, J., Kolomycka, A., and Nynca, A. (2014). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin and phytoestrogen genistein on the activity and the presence of steroidogenic enzyme proteins in cultured granulosa cells of pigs. Anim. Reprod. Sci. 148, 171–181.
Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin and phytoestrogen genistein on the activity and the presence of steroidogenic enzyme proteins in cultured granulosa cells of pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCgtLbK&md5=0255fc73435bc12397ca143fde9be5b3CAS |

Rajabi-Toustani, R., Motamedi-Mojdehi, R., Roostaei-Ali Mehr, M., and Motamedi-Mojdehi, R. (2013). Effect of Papaver rhoeas L. extract on in vitro maturation of sheep oocytes. Small Rumin. Res. 114, 146–151.
Effect of Papaver rhoeas L. extract on in vitro maturation of sheep oocytes.Crossref | GoogleScholarGoogle Scholar |

Revell, C., and Revell, D. (2007). Meeting ‘duty of care’ obligations when developing new pasture species. Field Crops Res. 104, 95–102.
Meeting ‘duty of care’ obligations when developing new pasture species.Crossref | GoogleScholarGoogle Scholar |

Rose, T. A., and Bavister, B. D. (1992). Effect of oocyte maturation medium on in vitro development of in vitro fertilized bovine embryos. Mol. Reprod. Dev. 31, 72–77.
Effect of oocyte maturation medium on in vitro development of in vitro fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383it1GqtQ%3D%3D&md5=fdbdba59f529ff5ce0ebe623eda21c20CAS |

Santos, R. R., Schoevers, E. J., and Roelen, B. A. J. (2014). Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod. Biol. Endocrinol. 12, 117.
Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology.Crossref | GoogleScholarGoogle Scholar |

Shutt, D. A., Axelsen, A., and Lindner, H. R. (1967). Free and conjugated isoflavones in the plasma of sheep following ingestion of oestrogenic clover. Aust. J. Agric. Res. 18, 647–655.
Free and conjugated isoflavones in the plasma of sheep following ingestion of oestrogenic clover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXht1Cq&md5=26af64877dd0590d221d4c26f5ca42d0CAS |

Spinaci, M., Volpe, S., De Ambrogi, M., Tamanini, C., and Galeati, G. (2008). Effects of epigallocatechin-3-gallate (EGCG) on in vitro maturation and fertilization of porcine oocytes. Theriogenology 69, 877–885.
Effects of epigallocatechin-3-gallate (EGCG) on in vitro maturation and fertilization of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCltrw%3D&md5=84c38d4ccc8162e89099d65077e79049CAS |

Thouas, G. A., Trounson, A. O., and Jones, G. M. (2005). Effect of female age on mouse oocyte developmental competence following mitochondrial injury. Biol. Reprod. 73, 366–373.
Effect of female age on mouse oocyte developmental competence following mitochondrial injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLc%3D&md5=5fc5e560fed4a2597136bb8e07a270bdCAS |

Tiemann, U., Schneider, F., Vanselow, J., and Tomek, W. (2007). In vitro exposure of porcine granulosa cells to the phytoestrogens genistein and daidzein: effects on the biosynthesis of reproductive steroid hormones. Reprod. Toxicol. 24, 317–325.
In vitro exposure of porcine granulosa cells to the phytoestrogens genistein and daidzein: effects on the biosynthesis of reproductive steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GkurjJ&md5=51776cf5d9fdf41d8fe0bf7b877d5aa1CAS |

Trenkle, A., and Burroughs, W. (2012). Physiological effects of estrogens in animal feeds with emphasis on growth of ruminants. In ‘Nutrition and Drug Interactions’. (Eds J. N. Hathcock and J. Coon.) pp. 577–611. (Academic Press: New York.)

Tuuri, T., Erämaa, M., Van Schaik, R. H. N., and Ritvos, O. (1996). Differential regulation of inhibin/activin α- and βA-subunit and follistatin mRNAs by cyclic AMP and phorbol ester in cultured human granulosa-luteal cells. Mol. Cell. Endocrinol. 121, 1–10.
Differential regulation of inhibin/activin α- and βA-subunit and follistatin mRNAs by cyclic AMP and phorbol ester in cultured human granulosa-luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFWqsLg%3D&md5=fa07c76b09064507da7d9a466875af25CAS |

Van Cauwenberge, A., and Alexandre, H. (2000). Effect of genistein alone and in combination with okadaic acid on the cell cycle resumption of mouse oocytes. Int. J. Dev. Biol. 44, 409–420.
| 1:CAS:528:DC%2BD3cXmtlSnurk%3D&md5=977915323cd4cbffc25466bc76c4eb85CAS |

Walker, S. K., Hill, J. L., Kleeman, D. O., and Nancarrow, C. D. (1996). Development of ovine embryos in synthetic oviduct fluid containing amino acids at oviduct fluid concentrations. Biol. Reprod. 55, 703–708.
Development of ovine embryos in synthetic oviduct fluid containing amino acids at oviduct fluid concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKgurw%3D&md5=7f0af3f1d56dc909e1270aedb04635a0CAS |

Wang, S., Panter, K. E., Gaffield, W., Evans, R. C., and Bunch, T. D. (2005). Effects of steroidal glycoalkaloids from potatoes (Solanum tuberosum) on in vitro bovine embryo development. Anim. Reprod. Sci. 85, 243–250.
Effects of steroidal glycoalkaloids from potatoes (Solanum tuberosum) on in vitro bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCksbrO&md5=ba062484d87951eeccc27e27c164d3c0CAS |

Wang, Z. G., Yu, S. D., and Xu, Z. R. (2007). Improvement in bovine embryo production in vitro by treatment with green tea polyphenols during in vitro maturation of oocytes. Anim. Reprod. Sci. 100, 22–31.
Improvement in bovine embryo production in vitro by treatment with green tea polyphenols during in vitro maturation of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2isLc%3D&md5=629d3c7bfe7f5a2846d0472b4f369c48CAS |

Welt, C. K., and Schneyer, A. L. (2001). Differential regulation of inhibin B and inhibin A by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles. J. Clin. Endocrinol. Metab. 86, 330–336.
| 1:CAS:528:DC%2BD3MXhtVGntr8%3D&md5=5795afec4226d5b80b258160675de196CAS |

Yoshida, N., and Mizuno, L. (2012). Effect of physiological levels of phytoestrogens on mouse oocyte maturation in vitro. Cytotechnology 64, 241–247.
Effect of physiological levels of phytoestrogens on mouse oocyte maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeht7c%3D&md5=1bdc53085915c9f53469a021dc064709CAS |

Zhuang, X. L., Fu, Y. C., Xu, J. J., Kong, X. X., Chen, Z. G., and Luo, L. L. (2010). Effects of genistein on ovarian follicular development and ovarian life span in rats. Fitoterapia 81, 998–1002.
Effects of genistein on ovarian follicular development and ovarian life span in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWrurjE&md5=1eba7fbc4627aff7c43dd6c1105ae4d0CAS |