Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Human extravillous trophoblast invasion: intrinsic and extrinsic regulation

E. Menkhorst A B D , A. Winship A B , M. Van Sinderen A B and E. Dimitriadis A B C
+ Author Affiliations
- Author Affiliations

A MIMR-PHI Institute of Medical Research, 27–31 Wright St, Clayton, Vic. 3168, Australia.

B Monash University, Clayton, Vic. 3800, Australia.

C Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic. 3800, Australia.

D Corresponding author. Email: ellen.menkhorst@mimr-phi.org

Reproduction, Fertility and Development 28(4) 406-415 https://doi.org/10.1071/RD14208
Submitted: 15 June 2014  Accepted: 27 July 2014   Published: 28 August 2014

Abstract

During the establishment of pregnancy, a human blastocyst implants into the uterine endometrium to facilitate the formation of a functional placenta. Implantation involves the blastocyst adhering to the uterine luminal epithelium before the primitive syncytiotrophoblast and subsequently specialised cells, the extravillous trophoblast (EVT), invade into the decidua in order to engraft and remodel uterine spiral arteries, creating the placental blood supply at the end of the first trimester. Defects in EVT invasion lead to abnormal placentation and thus adverse pregnancy outcomes. The local decidual environment is thought to play a key role in regulating trophoblast invasion. Here we describe the major cell types present in the decidua during the first trimester of pregnancy and review what is known about their regulation of EVT invasion. Overall, the evidence suggests that in a healthy pregnancy almost all cell types in the decidua actively promote EVT invasion and, further, that reduced EVT invasion towards the end of the first trimester is regulated, in part, by the reduced invasive capacity of EVTs shown at this time.

Additional keywords: decidua, macrophage, placenta, spiral artery, T cell, uterine natural killer.


References

Aplin, J. D. (2010). Developmental cell biology of human villous trophoblast: current research problems. Int. J. Dev. Biol. 54, 323–329.
Developmental cell biology of human villous trophoblast: current research problems.Crossref | GoogleScholarGoogle Scholar | 19876840PubMed |

Benson, G. V., Lim, H., Paria, B. C., Satokata, I., Dey, S. K., and Maas, R. L. (1996). Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122, 2687–2696.
| 1:CAS:528:DyaK28XlvFCktro%3D&md5=766bab0740bb7933acf563cc78079bdeCAS | 8787743PubMed |

Bilban, M., Tauber, S., Haslinger, P., Pollheimer, J., Saleh, L., Pehamberger, H., Wagner, O., and Knöfler, M. (2010). Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta 31, 989–996.
Trophoblast invasion: assessment of cellular models using gene expression signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgtrvP&md5=ba1816e3abdc4fca2c23a1c20df1245aCAS | 20850871PubMed |

Bilinski, P., Roopenian, D., and Gossler, A. (1998). Maternal IL-11Rα function is required for normal decidua and fetoplacental development in mice. Genes Dev. 12, 2234–2243.
Maternal IL-11Rα function is required for normal decidua and fetoplacental development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVSht78%3D&md5=1f6f6a174d030caf87390f9c5345a1b3CAS | 9679067PubMed |

Brosens, J. J., Pijnenborg, R., and Brosens, I. A. (2002). The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am. J. Obstet. Gynecol. 187, 1416–1423.
The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature.Crossref | GoogleScholarGoogle Scholar | 12439541PubMed |

Bulmer, J. N., Williams, P. J., and Lash, G. E. (2010). Immune cells in the placental bed. Int. J. Dev. Biol. 54, 281–294.
Immune cells in the placental bed.Crossref | GoogleScholarGoogle Scholar | 19876837PubMed |

Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N., and Jauniaux, E. (2002). Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 87, 2954–2959.
Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFCjsrk%3D&md5=3c05523c5d9e17d9cce4bc3fc44fb6a0CAS | 12050279PubMed |

Burton, G. J., Jauniaux, E., and Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312.
The influence of the intrauterine environment on human placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVajtb8%3D&md5=b20f3bf852930d796a4d54e60f3eb80aCAS | 19757391PubMed |

Cartwright, J. E., Kenny, L. C., Dash, P. R., Crocker, I. P., Aplin, J. D., Baker, P. N., and Whitley, G. S. J. (2002). Trophoblast invasion of spiral arteries. Placenta 23, 232–235.
Trophoblast invasion of spiral arteries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383ht1Cktw%3D%3D&md5=0f62b6af4ae380594b30f7586843ade7CAS | 11945091PubMed |

Cartwright, J. E., Fraser, R., Leslie, K., Wallace, A. E., and James, J. L. (2010). Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders. Reproduction 140, 803–813.
Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtLk%3D&md5=f879f0f26892db24483ce7ab754e34beCAS | 20837731PubMed |

Chau, S. E., Murthi, P., Wong, M. H., Whitley, G. S., Brennecke, S. P., and Keogh, R. J. (2013). Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26. Hum. Reprod. 28, 1497–1507.
Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOgtb8%3D&md5=e9989a4d63ae8394cf6099cadd5997c4CAS | 23477905PubMed |

Chen, J. Z. J., Wong, M. H., Brennecke, S. P., and Keogh, R. J. (2011). The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function. Mol. Cell. Endocrinol. 342, 73–80.
The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKjsrg%3D&md5=88878198be99d8aefc2d0bdfb86fcb6bCAS |

Co, E. C., Gormley, M., Kapidzic, M., Rosen, D. B., Scott, M. A., Stolp, H. A. R., McMaster, M., Lanier, L. L., Barcena, A., and Fisher, S. J. (2013). Maternal decidual macrophages inhibit NK killing of invasive cytotrophoblasts during human pregnancy. Biol. Reprod. 88, 155.
Maternal decidual macrophages inhibit NK killing of invasive cytotrophoblasts during human pregnancy.Crossref | GoogleScholarGoogle Scholar | 23553431PubMed |

Cohen, M., Wuillemin, C., Irion, O., and Bischof, P. (2010). Role of decidua in trophoblastic invasion. Neuroendocrinol. Lett. 31, 193–197.
| 1:CAS:528:DC%2BC3cXns1Cju78%3D&md5=009a89ebe2c57085f724eb654163092bCAS | 20424580PubMed |

Croy, B. A., Guimond, M.-J., Luross, J., Hahnel, A., Wang, B., and van den Heuvel, M. (1997). Uterine natural killer cells do not require interleukin-2 for their differentiation or maturation. Am. J. Reprod. Immunol. 37, 463–470.
Uterine natural killer cells do not require interleukin-2 for their differentiation or maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2sznt1Sguw%3D%3D&md5=62813c5efb6b56daa1342190f209a036CAS | 9228303PubMed |

De Oliveira, L. G., Lash, G. E., Murray-Dunning, C., Bulmer, J. N., Innes, B. A., Searle, R. F., Sass, N., and Robson, S. C. (2010). Role of interleukin 8 in uterine natural killer cell regulation of extravillous trophoblast cell invasion. Placenta 31, 595–601.
Role of interleukin 8 in uterine natural killer cell regulation of extravillous trophoblast cell invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWmurk%3D&md5=22f3502330f0e1e17e476339bd144c27CAS | 20483454PubMed |

Dimitriadis, E., Robb, L., and Salamonsen, L. A. (2002). Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol. Hum. Reprod. 8, 636–643.
Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFKlsb4%3D&md5=1b918b91a5e24ca6ce7c669eddd99794CAS | 12087078PubMed |

Dimitriadis, E., Menkhorst, E. M., Salamonsen, L. A., and Paiva, P. (2010). Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy. Placenta 31, S99–S104.
Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 20129664PubMed |

Fafet, P., Rebouissou, C., Maudelonde, T., and Vignais, M.-L. (2008). Opposite effects of transforming growth factor-{beta} activation and Rho-associated kinase inhibition on human trophoblast migration in a reconstituted placental–endometrial coculture system. Endocrinology 149, 4475–4485.
Opposite effects of transforming growth factor-{beta} activation and Rho-associated kinase inhibition on human trophoblast migration in a reconstituted placental–endometrial coculture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnu7vM&md5=add11bb08fdc941b1ff81c0707432f53CAS | 18499753PubMed |

Fan, D.-X., Duan, J., Li, M.-Q., Xu, B., Li, D.-J., and Jin, L.-P. (2011). The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin. Immunol. 141, 284–292.
The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2rs73J&md5=38f3bed7720a95208a0c4fa6e6916964CAS | 21873118PubMed |

Founds, S. A., Conley, Y. P., Lyons-Weiler, J. F., Jeyabalan, A., Hogge, W. A., and Conrad, K. P. (2009). Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30, 15–24.
Altered global gene expression in first trimester placentas of women destined to develop preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtbjN&md5=4719904d08384318f1ee87e9f2f06f5aCAS | 19027158PubMed |

Frank, G. R., Brar, A. K., Cedars, M. I., and Handwerger, S. (1994). Prostaglandin E2 enhances human endometrial stromal cell differentiation. Endocrinology 134, 258–263.
| 1:CAS:528:DyaK2cXntVWgtw%3D%3D&md5=9f872f2bfc9db12a6305b17b8f9cd5cdCAS | 7506205PubMed |

Gellersen, B., and Brosens, J. (2003). Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J. Endocrinol. 178, 357–372.
Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOhsbw%3D&md5=9041a222aee9a21ddb64a338db77deb9CAS | 12967329PubMed |

Gellersen, B., Reimann, K., Samalecos, A., Aupers, S., and Bamberger, A. M. (2010). Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum. Reprod. 25, 862–873.
Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslejsLo%3D&md5=69d3fb4d4b7c1c93e288269e699a83bbCAS | 20118488PubMed |

Genbacev, O., Zhou, Y., Ludlow, J. W., and Fisher, S. J. (1997). Regulation of human placental development by oxygen tension. Science 277, 1669–1672.
Regulation of human placental development by oxygen tension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSns7c%3D&md5=c9ac824aa9a27804275507adedb5cd7aCAS | 9287221PubMed |

Godbole, G., Suman, P., Gupta, S. K., and Modi, D. (2011). Decidualized endometrial stromal cell derived factors promote trophoblast invasion. Fertil. Steril. 95, 1278–1283.
Decidualized endometrial stromal cell derived factors promote trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Cksb0%3D&md5=5b7ff2ccfbc7ef71d045115664be9954CAS | 21067732PubMed |

Gonzalez, M., Neufeld, J., Reimann, K., Wittmann, S., Samalecos, A., Wolf, A., Bamberger, A.-M., and Gellersen, B. (2011). Expansion of human trophoblastic spheroids is promoted by decidualized endometrial stromal cells and enhanced by heparin-binding epidermal growth factor-like growth factor and interleukin-1β. Mol. Hum. Reprod. 17, 421–433.
Expansion of human trophoblastic spheroids is promoted by decidualized endometrial stromal cells and enhanced by heparin-binding epidermal growth factor-like growth factor and interleukin-1β.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKms7Y%3D&md5=cca4dadad23b417de48fc6105f2c9571CAS | 21357210PubMed |

Graham, C. H., and Lala, P. K. (1991). Mechanism of control of trophoblast invasion in situ. J. Cell. Physiol. 148, 228–234.
Mechanism of control of trophoblast invasion in situ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvF2lu74%3D&md5=59e69f993c2edb79b25356bcd7f553bcCAS | 1652588PubMed |

Guo, Y., Lee, C. L., So, K. H., Gao, J., Yeung, W. S., Yao, Y., and Lee, K. F. (2013). Soluble human leukocyte antigen-g5 activates extracellular signal-regulated protein kinase signaling and stimulates trophoblast invasion. PLoS ONE 8, e76023.
Soluble human leukocyte antigen-g5 activates extracellular signal-regulated protein kinase signaling and stimulates trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFyrtbvP&md5=0b09ad254a4a5791521b62d080f3f3a0CAS | 24098421PubMed |

Gustafsson, C., Mjösberg, J., Matussek, A., Geffers, R., Matthiesen, L., Berg, G., Sharma, S., Buer, J., and Ernerudh, J. (2008). Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS ONE 3, e2078.
Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype.Crossref | GoogleScholarGoogle Scholar | 18446208PubMed |

Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S., and Mandelboim, O. (2006). Decidual NK cells regulate key developmental proceses at the human fetal–maternal interface. Nat. Med. 12, 1065–1074.
Decidual NK cells regulate key developmental proceses at the human fetal–maternal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFCltbs%3D&md5=699bd08ba25e129f5a0ce64315da93e4CAS | 16892062PubMed |

Hannan, N. J., Jones, R. L., White, C. A., and Salamonsen, L. A. (2006). The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto–maternal interface. Biol. Reprod. 74, 896–904.
The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto–maternal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jur0%3D&md5=7fd7512121148340421a825a30b3e172CAS | 16452465PubMed |

Hannan, N. J., Paiva, P., Dimitriadis, E., and Salamonsen, L. A. (2010). Models for study of human embryo implantation: choice of cell lines? Biol. Reprod. 82, 235–245.
Models for study of human embryo implantation: choice of cell lines?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSns7k%3D&md5=35f7868f6cc645548b85eac264df2f71CAS | 19571263PubMed |

Hannon, T., Innes, B. A., Lash, G. E., Bulmer, J. N., and Robson, S. C. (2012). Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta creta: an immunohistochemical study. Placenta 33, 998–1004.
Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta creta: an immunohistochemical study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FivFSlsQ%3D%3D&md5=8128d27a75052b1ff98129abccc8219cCAS | 23040667PubMed |

Harris, L. K. (2011). IFPA Gabor Than Award lecture: transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline. Placenta 32, S154–S158.
IFPA Gabor Than Award lecture: transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline.Crossref | GoogleScholarGoogle Scholar | 21167598PubMed |

Hiyama, M., Kusakabe, K. T., Kuwahara, A., Wakitani, S., Khan, H., and Kiso, Y. (2011). Differentiation of uterine natural killer cells in pregnant SCID (scid/scid) mice. J. Vet. Med. Sci. 73, 1337–1340.
Differentiation of uterine natural killer cells in pregnant SCID (scid/scid) mice.Crossref | GoogleScholarGoogle Scholar | 21628864PubMed |

Hofmann, A. P., Gerber, S. A., and Croy, B. A. (2014). Uterine natural killer cells pace early development of mouse decidua basalis. Mol. Hum. Reprod. 20, 66–76.
Uterine natural killer cells pace early development of mouse decidua basalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Gqtw%3D%3D&md5=091c7ccf33fac51d0eb85aed6b67f4a6CAS | 24000237PubMed |

Hohn, H. P., Linke, M., and Denker, H. W. (2000). Adhesion of trophoblast to uterine epithelium as related to the state of trophoblast differentiation: in vitro studies using cell lines. Mol. Reprod. Dev. 57, 135–145.
Adhesion of trophoblast to uterine epithelium as related to the state of trophoblast differentiation: in vitro studies using cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVeisb4%3D&md5=700799b3362465b59e4d61bd0272d511CAS | 10984413PubMed |

Hu, Y., Dutz, J. P., MacCalman, C. D., Yong, P., Tan, R., and von Dadelszen, P. (2006). Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-γ. J. Immunol. 177, 8522–8530.
Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-γ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kitr7K&md5=f8154b7f4fba668e7675aac3e7ba5c68CAS | 17142750PubMed |

Huang, S. J., Chen, C. P., Schatz, F., Rahman, M., Abrahams, V. M., and Lockwood, C. J. (2008). Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J. Pathol. 214, 328–336.
Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVSgt7g%3D&md5=2e5bd5cbf9cbf07f8c2d2511f5cef767CAS | 18069648PubMed |

Hunt, J. S., and Petroff, M. G. (2013). IFPA Senior Award Lecture: reproductive immunology in perspective: reprogramming at the maternal–fetal interface. Placenta 34, S52–S55.
IFPA Senior Award Lecture: reproductive immunology in perspective: reprogramming at the maternal–fetal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlartbs%3D&md5=9ba054868fc62d6c422c109adda0258eCAS | 23294570PubMed |

Irving, J. A., and Lala, P. K. (1995). Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-B, IGF-II, and IGFBP-1. Exp. Cell Res. 217, 419–427.
Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-B, IGF-II, and IGFBP-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslyrt78%3D&md5=9241ea065523387f95868d53a809b765CAS | 7535237PubMed |

James, J. L., Stone, P. R., and Chamley, L. W. (2006). The effects of oxygen concentration and gestational age on extravillous trophoblast outgrowth in a human first trimester villous explant model. Hum. Reprod. 21, 2699–2705.
The effects of oxygen concentration and gestational age on extravillous trophoblast outgrowth in a human first trimester villous explant model.Crossref | GoogleScholarGoogle Scholar | 16807282PubMed |

Jiang, Y., Zhu, Y., Shi, Y., He, Y., Kuang, Z., Sun, Z., and Wang, J. (2013). Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro. PLoS ONE 8, e69079.
Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1eju73P&md5=8734179f012a179522182622b172f0d4CAS | 23935929PubMed |

Jones, R., Salamonsen, L. A., and Findlay, J. K. (2002). Activin A promotes human endometrial stromal cell decidualization in vitro. J. Clin. Endocrinol. Metab. 87, 4001–4004.
| 1:CAS:528:DC%2BD38XmtF2gu70%3D&md5=fda7c72cba978a3d4de5f1d12f300aa6CAS | 12161551PubMed |

Jones, R. L., Findlay, J. K., Farnworth, P. G., Robertson, D. M., Wallace, E., and Salamonsen, L. A. (2006). Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases: potential interactions during decidualization and trophoblast invasion. Endocrinology 147, 724–732.
Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases: potential interactions during decidualization and trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVarsw%3D%3D&md5=3a224506b3f91331a5ea7fabfead73c6CAS | 16282351PubMed |

Jovanović, M., Stefanoska, I., Radojčić, L., and Vićovac, L. (2010). Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins α5 and β1. Reproduction 139, 789–798.
Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins α5 and β1.Crossref | GoogleScholarGoogle Scholar | 20133364PubMed |

Kämmerer, U., Eggert, A. O., Kapp, M., McLellan, A. D., Geijtenbeek, T. B., Dietl, J., van Kooyk, Y., and Kampgen, E. (2003). Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol. 162, 887–896.
Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy.Crossref | GoogleScholarGoogle Scholar | 12598322PubMed |

Kemp, B., Kertschanska, S., Kadyrov, M., Rath, W., Kaufmann, P., and Huppertz, B. (2002). Invasive depth of extravillous trophoblast correlates with cellular phenotype: a comparison of intra- and extrauterine implantation sites. Histochem. Cell Biol. 117, 401–414.
Invasive depth of extravillous trophoblast correlates with cellular phenotype: a comparison of intra- and extrauterine implantation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVert7w%3D&md5=275b27bafc6f237e784fba30e1995bdcCAS | 12029487PubMed |

Keskin, D. B., Allan, D. S. J., Rybalov, B., Andzelm, M. M., Stern, J. N. H., Kopcow, H. D., Koopman, L. A., and Strominger, J. L. (2007). TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16– NK cells with similarities to decidual NK cells. Proc. Natl Acad. Sci. USA 104, 3378–3383.
TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16– NK cells with similarities to decidual NK cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWlt7k%3D&md5=aed31e0509d1935bec8f2b49d743a049CAS | 17360654PubMed |

Khong, T. Y. (2008). The pathology of placenta accreta, a worldwide epidemic. J. Clin. Pathol. 61, 1243–1246.
The pathology of placenta accreta, a worldwide epidemic.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FhsFClsw%3D%3D&md5=9bfd6f8878b842c6a2bba14a4f2df7b2CAS | 18641410PubMed |

Khong, T. Y., and Robertson, W. B. (1987). Placenta creta and placenta praevia creta. Placenta 8, 399–409.
Placenta creta and placenta praevia creta.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FmvVCitg%3D%3D&md5=0aea63fd66b1116faac08dc377047372CAS | 3684969PubMed |

Kim, H.-J., and Cantor, H. (2014). CD4 T-cell Subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol. Res. 2, 91–98.
CD4 T-cell Subsets and tumor immunity: the helpful and the not-so-helpful.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFSjtbg%3D&md5=aa5a763ba3a2dc534e9671d3bc2ae7bcCAS | 24778273PubMed |

Kim, K.-R., Jun, S.-Y., Kim, J.-Y., and Ro, J. Y. (2004). Implantation site intermediate trophoblasts in placenta cretas. Mod. Pathol. 17, 1483–1490.
Implantation site intermediate trophoblasts in placenta cretas.Crossref | GoogleScholarGoogle Scholar | 15205687PubMed |

Knöfler, M. (2010). Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 54, 269–280.
Critical growth factors and signalling pathways controlling human trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 19876833PubMed |

Knöfler, M., and Pollheimer, J. (2012). IFPA Award in Placentology Lecture: molecular regulation of human trophoblast invasion. Placenta 33, S55–S62.
IFPA Award in Placentology Lecture: molecular regulation of human trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 22019198PubMed |

Koopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., and Strominger, J. L. (2003). Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198, 1201–1212.
Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVGqt7k%3D&md5=43e68ea7d334ddebac60bab5ecdb2c23CAS | 14568979PubMed |

Lash, G. E., Warren, A. Y., Unerwood, S., and Baker, P. N. (2003). Vascular endothelial growth factor is a chemoattractant for trophoblast cells. Placenta 24, 549–556.
Vascular endothelial growth factor is a chemoattractant for trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Wmsbs%3D&md5=4dfad7659c8404b6a25bb0949e8076b5CAS | 12744932PubMed |

Lash, G. E., Otun, H. A., Innes, B. A., Bulmer, J. N., Searle, R. F., and Robson, S. C. (2005). Inhibition of trophoblast cell invasion by TGFB1, 2, and 3 is associated with a decrease in active proteases. Biol. Reprod. 73, 374–381.
Inhibition of trophoblast cell invasion by TGFB1, 2, and 3 is associated with a decrease in active proteases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsb4%3D&md5=cead2c1dd466c0227f11c1f6a68d544dCAS | 15858216PubMed |

Lash, G. E., Otun, H. A., Innes, B. A., Bulmer, J. N., Searle, R. F., and Robson, S. C. (2006a). Low oxygen concentrations inhibit trophoblast cell invasion from early gestation placental explants via alterations in levels of the urokinase plasminogen activator system. Biol. Reprod. 74, 403–409.
Low oxygen concentrations inhibit trophoblast cell invasion from early gestation placental explants via alterations in levels of the urokinase plasminogen activator system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1KktA%3D%3D&md5=fbc80ce0da5978ef3760100fc2dba272CAS | 16251495PubMed |

Lash, G. E., Otun, H. A., Innes, B. A., Kirkley, M., De Oliveira, L., Searle, R. F., Robson, S. C., and Bulmer, J. N. (2006b). Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels. FASEB J. 20, 2512–2518.
Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLbL&md5=a311256eb38b1c275c25798c3a1c096eCAS | 17142800PubMed |

Lash, G. E., Otun, H. A., Innes, B. A., Percival, K., Searle, R. F., Robson, S. C., and Bulmer, J. N. (2010). Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum. Reprod. 25, 1137–1145.
Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFOjtrs%3D&md5=646041871f19bb6047a47de6509d6dfdCAS | 20219775PubMed |

Lash, G. E., Naruse, K., Robson, A., Innes, B. A., Searle, R. F., Robson, S. C., and Bulmer, J. N. (2011). Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum. Reprod. 26, 2289–2295.
Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsr%2FJ&md5=2fcdc55486aaa6c8116c30c06dbf7bcdCAS | 21685139PubMed |

Lessey, B. A., Castelbaum, A. J., Buck, C. A., Lei, Y., Yowell, C. W., and Sun, J. (1994). Further characterization of endometrial integrins during the menstrual cycle and in pregnancy. Fertil. Steril. 62, 497–506.
| 1:STN:280:DyaK2czktFeqtg%3D%3D&md5=8d35455dec0969de00c68b645879ecbcCAS | 8062944PubMed |

Liu, H., Liu, X., Jin, H., Yang, F., Gu, W., and Li, X. (2013a). Proteomic analysis of knockdown of HLA-G in invasion of human trophoblast cell line JEG-3. Int. J. Clin. Exp. Pathol. 6, 2451–2459.
| 1:CAS:528:DC%2BC2cXmvFOqtbo%3D&md5=ced98199ec3778d3f80d6587e8c3b4f5CAS | 24228107PubMed |

Liu, X., Gu, W., and Li, X. (2013b). HLA-G regulates the invasive properties of JEG-3 choriocarcinoma cells by controlling STAT3 activation. Placenta 34, 1044–1052.
HLA-G regulates the invasive properties of JEG-3 choriocarcinoma cells by controlling STAT3 activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyls7fI&md5=5333cdc30b8f5ca49917b928d7fad796CAS | 24054889PubMed |

Lunghi, L., Ferretti, M., Medici, S., Biondi, C., and Vesce, F. (2007). Control of human trophoblast function. Reprod. Biol. Endocrinol. 5, 6.
Control of human trophoblast function.Crossref | GoogleScholarGoogle Scholar | 17288592PubMed |

Luo, J., Qiao, F., and Yin, X. (2011). Hypoxia induces FGF2 production by vascular endothelial cells and alters MMP9 and TIMP1 expression in extravillous trophoblasts and their invasiveness in a cocultured model. J. Reprod. Dev. 57, 84–91.
Hypoxia induces FGF2 production by vascular endothelial cells and alters MMP9 and TIMP1 expression in extravillous trophoblasts and their invasiveness in a cocultured model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Cgu7c%3D&md5=ccb79ef80b7835b89965b0c5dd58786dCAS | 21041986PubMed |

Menkhorst, E., Salamonsen, L. A., Robb, L., and Dimitriadis, E. (2009). IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice. Biol. Reprod. 80, 920–927.
IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWqu7g%3D&md5=bc82a72021cc0baf2d752fcfe08083f0CAS | 19144959PubMed |

Menkhorst, E. M., Lane, N., Winship, A., Li, P., Yap, J., Meehan, K., Rainczuk, A., Stephens, A. N., and Dimitriadis, E. (2012). Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS ONE 7, e31418.
Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVektLo%3D&md5=e1b7fae867e01c632ab234fb2e83e833CAS | 22359590PubMed |

Mincheva-Nilsson, L., Kling, M., Hammarström, S., Nagaeva, O., Sundqvist, K. G., Hammarström, M. L., and Baranov, V. (1997). Gamma delta T cells of human early pregnancy decidua: evidence for local proliferation, phenotypic heterogeneity, and extrathymic differentiation. J. Immunol. 159, 3266–3277.
| 1:CAS:528:DyaK2sXmtlOisL8%3D&md5=448585a4bed3b875a7cdca35bb2ac036CAS | 9317125PubMed |

Moser, G., Gauster, M., Orendi, K., Glasner, A., Theuerkauf, R., and Huppertz, B. (2010). Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models. Hum. Reprod. 25, 1127–1136.
Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3lslylsw%3D%3D&md5=d6abed4f36dfd80f4840f1c32142a15bCAS | 20176592PubMed |

Paiva, P., Menkhorst, E. M., Salamonsen, L. A., and Dimitriadis, E. (2009a). Leukemia inhibitory factor and interleukin-11: Critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 20, 319–328.
Leukemia inhibitory factor and interleukin-11: Critical regulators in the establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 19647472PubMed |

Paiva, P., Salamonsen, L. A., Manuelpillai, U., and Dimitriadis, E. (2009b). Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation. Biol. Reprod. 80, 302–310.
Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitb8%3D&md5=a29dc04e6b7e06d089b082ded9b0de12CAS | 18987331PubMed |

Parhar, R. S., Kennedy, T. G., and Lala, P. K. (1988). Suppression of lymphocyte alloreactivity by early gestational human decidua. Cell. Immunol. 116, 392–410.
Suppression of lymphocyte alloreactivity by early gestational human decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtV2mtrc%3D&md5=cd86f9606bd61fc6a879d789ab778584CAS | 2972389PubMed |

Petsas, G., Jeschke, U., Richter, D. U., Minas, V., Hammer, A., Kalantaridou, S., Toth, B., Tsatsanis, C., Friese, K., and Makrigiannakis, A. (2012). Aberrant expression of corticotropin-releasing hormone in pre-eclampsia induces expression of FasL in maternal macrophages and extravillous trophoblast apoptosis. Mol. Hum. Reprod. 18, 535–545.
Aberrant expression of corticotropin-releasing hormone in pre-eclampsia induces expression of FasL in maternal macrophages and extravillous trophoblast apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Sqs7bL&md5=3b05fe457abd52c7ac38997ae6d174b8CAS | 22763913PubMed |

Pollheimer, J., Fock, V., and Knöfler, M. (2014). Review: the ADAM metalloproteinases: novel regulators of trophoblast invasion? Placenta 35, S57–S63.
Review: the ADAM metalloproteinases: novel regulators of trophoblast invasion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGlt7zI&md5=fb5e1920a999fb1c118e0f1eb6ba787aCAS | 24231445PubMed |

Popovici, R. M., Kao, L.-C., and Giudice, L. C. (2000). Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology 141, 3510–3513.
Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVertL8%3D&md5=b4d7a3867419a6f61b8f80aafa30a7f7CAS | 10965925PubMed |

Prefumo, F., Sebire, N. J., and Thilaganathan, B. (2004). Decreased endovascular trophoblast invasion in first timester pregnancies with high-resistance uterine artery Doppler indices. Hum. Reprod. 19, 206–209.
Decreased endovascular trophoblast invasion in first timester pregnancies with high-resistance uterine artery Doppler indices.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3sngsFCjuw%3D%3D&md5=142223b667ead346c1fbf2666e940401CAS | 14688183PubMed |

Red-Horse, K., Kapidzic, M., Zhou, Y., Feng, K. T., Singh, H., and Fisher, S. J. (2005). EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorperating the human placenta into the maternal circulation. Development 132, 4097–4106.
EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorperating the human placenta into the maternal circulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgs7%2FO&md5=0d7082100b1da29cbb1647445d762234CAS | 16107476PubMed |

Reister, F., Frank, H.-G., Heyl, W., Kosanke, G., Huppertz, B., Schroder, W., Kaufmann, P., and Rath, W. (1999). The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differes from that in healthy patients. Placenta 20, 229–233.
The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differes from that in healthy patients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3htVWhsw%3D%3D&md5=61b13e537326d83ddc4e790fe74d6078CAS | 10195746PubMed |

Renaud, S. J., Postovit, L. M., Macdonald-Goodfellow, S. K., McDonald, G. T., Caldwell, J. D., and Graham, C. H. (2005). Activated macrophages inhibit human cytotrophoblast invasiveness in vitro. Biol. Reprod. 73, 237–243.
Activated macrophages inhibit human cytotrophoblast invasiveness in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqs7o%3D&md5=9cf1f7c2267935decff1c3e6863b0a3bCAS | 15800179PubMed |

Renaud, S. J., Macdonald-Goodfellow, S. K., and Graham, C. H. (2007). Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol. Reprod. 76, 448–454.
Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWhurc%3D&md5=1b3f6d7d7c5111700fa8274e72551daaCAS | 17151353PubMed |

Robb, L., Li, R., Hartley, L., Nandurkar, H. H., Koentgen, F., and Begley, C. G. (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med. 4, 303–308.
Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Kjtbo%3D&md5=ba381cee27a6fb5a0372d68f028f2454CAS | 9500603PubMed |

Saito, S., Nishikawa, K., Morii, T., Enmoto, M., Narita, N., Motoyoshi, K., and Ichijo, M. (1993). Cytokine production by CD16–CD56bright natural killer cells in the human early pregnancy decidua. Int. Immunol. 5, 559–563.
Cytokine production by CD16–CD56bright natural killer cells in the human early pregnancy decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFSqsw%3D%3D&md5=0d873a97d4380de2d1120424e7b75e09CAS | 7686393PubMed |

Salamonsen, L. A., Nie, G., Hannan, N. J., and Dimitriadis, E. (2009). Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity. Reprod. Fertil. Dev. 21, 923–934.
Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVartbfM&md5=9e94f65c7620cf36177eb6914c024c33CAS | 19698296PubMed |

Salker, M., Teklenburg, G., Molokhia, M., Lavery, S., Trew, G., Aojanepong, T., Mardon, H., Lokugamage, A. U., Rai, R., Landles, C., Roelen, B. A. J., Quenby, S., Kuijk, E. W., Kavelaars, A., Heijnen, C. J., Regan, L., Macklon, N. S., and Brosens, J. (2010). Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE 5, e10287.
Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss.Crossref | GoogleScholarGoogle Scholar | 20422017PubMed |

Scaife, P. J., Bulmer, J. N., Robson, S. C., Innes, B. A., and Searle, R. F. (2006). Effector activity of decidual CD8+ T lymphocytes in early human pregnancy. Biol. Reprod. 75, 562–567.
Effector activity of decidual CD8+ T lymphocytes in early human pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs73L&md5=a2e4d3aa31150ec80ac80f30ce43bdbcCAS | 16822900PubMed |

Schwede, S., Alfer, J., and von Rango, U. (2014). Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases. Placenta 35, 378–385.
Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSlurw%3D&md5=df310938f1cc65bfbe61cdcfff49e777CAS | 24725555PubMed |

Shuya, L. L., Menkhorst, E., Yap, J., Li, P., and Dimitriadis, E. (2011). Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice. PLoS ONE 6, e25288.
Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajs7nM&md5=ecbad060887048cf3c2f6cd536595106CAS | 21966484PubMed |

Singh, H., Endo, Y., and Nie, G. (2011). Decidual HtrA3 negatively regulates trophoblast invasion during human placentation. Hum. Reprod. 26, 748–757.
Decidual HtrA3 negatively regulates trophoblast invasion during human placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKlsL4%3D&md5=786cb10463dbd9bf1d5534907df5f7f9CAS | 21321049PubMed |

Smith, S. D., Dunk, C. E., Aplin, J. D., Harris, L. K., and Jones, R. L. (2009). Evidence for immune cell involvement in decidual spiral arteriole remodelling in early human pregnancy. Am. J. Pathol. 174, 1959–1971.
Evidence for immune cell involvement in decidual spiral arteriole remodelling in early human pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVWms7Y%3D&md5=a134774b09468cd33f7d3d9cfc6c9287CAS | 19349361PubMed |

Spessotto, P., Bulla, R., Danussi, C., Radillo, O., Cervi, M., Monami, G., Bossi, F., Tedesco, F., Doliana, R., and Colombatti, A. (2006). EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall. J. Cell Sci. 119, 4574–4584.
EMILIN1 represents a major stromal element determining human trophoblast invasion of the uterine wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12hurjL&md5=d89fa46a8ba3e4c39024e8afc021cf7fCAS | 17074837PubMed |

Stefanoska, I., Jovanovic Krivokuca, M., Vasilijic, S., Cujic, D., and Vicovac, L. (2013). Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 34, 775–783.
Prolactin stimulates cell migration and invasion by human trophoblast in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFShtrzE&md5=2278e042249158e20832b9aaf6dcdc1dCAS | 23849393PubMed |

Tabanelli, S., Tang, B., and Gurpide, E. (1992). In vitro decidualization of human endometrial stromal cells. J. Steroid Biochem. Mol. Biol. 42, 337–344.
| 1:CAS:528:DyaK38XksVSktbs%3D&md5=bd29e46e7741591e380d178a13196655CAS | 1534990PubMed |

Tapia, A., Salamonsen, L. A., Manuelpillai, U., and Dimitriadis, E. (2008). Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2. Hum. Reprod. 23, 1724–1732.
Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGqu78%3D&md5=6e42c4ddf04c7c14263f64a4ffb354a5CAS | 18492704PubMed |

Tsai, C.-Y., Chou, C.-K., Yang, C.-W., Lai, Y.-C., Liang, C.-C., Chen, C.-M., and Tsai, T.-F. (2008). Hurp deficiency in mice leads to female infertility caused by an implantation defect. J. Biol. Chem. 283, 26 302–26 306.
Hurp deficiency in mice leads to female infertility caused by an implantation defect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFejsbjL&md5=cb637b8016fd43707d0c3605f58ce69fCAS |

Whitley, G. S., Dash, P. R., Ayling, L. J., Prefumo, F., Thilaganathan, B., and Cartwright, J. E. (2007). Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am. J. Pathol. 170, 1903–1909.
Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOht7g%3D&md5=13ce59a5181ede933b6747b08029a599CAS | 17525258PubMed |

Williams, P. J., Bulmer, J. N., Searle, R. F., Innes, B. A., and Robson, S. C. (2009). Altered decidual leucocyte populations in the placental bed in pre-eclampsia and foetal growth restriction: a comparison with late normal pregnancy. Reproduction 138, 177–184.
Altered decidual leucocyte populations in the placental bed in pre-eclampsia and foetal growth restriction: a comparison with late normal pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemtrw%3D&md5=a741640eab88ff6e57323743f1465c00CAS | 19357130PubMed |

Wu, Z. M., Yang, H., Li, M., Yeh, C. C., Schatz, F., Lockwood, C. J., Di, W., and Huang, S. J. (2012). Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts. Placenta 33, 188–194.
Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts.Crossref | GoogleScholarGoogle Scholar | 22212249PubMed |

Xu, P., Wang, Y.-l., Zhu, S.-j., Luo, S.-y., Piao, Y.-s., and Zhuang, L.-z. (2000). Expression of matrix metalloproteinase-2, -9, and -14, tissue inhibitors of metalloproteinase-1, and matrix proteins in human placenta during the first trimester. Biol. Reprod. 62, 988–994.
Expression of matrix metalloproteinase-2, -9, and -14, tissue inhibitors of metalloproteinase-1, and matrix proteins in human placenta during the first trimester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFajtLs%3D&md5=17f75d388f6f8bfba572c7a7c8f03637CAS | 10727268PubMed |

Xu, G., Guimond, M. J., Charkraborty, C., and Lala, P. K. (2002). Control of proliferation, migration, and invasiveness of human extravillous trophoblast by decorin, a decidual product. Biol. Reprod. 67, 681–689.
Control of proliferation, migration, and invasiveness of human extravillous trophoblast by decorin, a decidual product.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKquro%3D&md5=8c8facacd62e27ffc8719ac188ce2a42CAS | 12135914PubMed |

Zavan, B., Carvalho, C. C., Rossi, W. C., Paffaro, A. M. A., and Paffaro, V. A. (2012). Splenectomy delays uterine natural killer cell recruitment to implantation sites and prolongs pregnancy in mice. Anat. Rec. (Hoboken) 295, 1221–1228.
Splenectomy delays uterine natural killer cell recruitment to implantation sites and prolongs pregnancy in mice.Crossref | GoogleScholarGoogle Scholar | 22593087PubMed |

Zhu, X. M., Han, T., Sargent, I. L., Wang, Y. L., and Yao, Y. Q. (2009). Conditioned medium from human decidual stromal cells has a concentration-dependent effect on trophoblast cell invasion. Placenta 30, 74–78.
Conditioned medium from human decidual stromal cells has a concentration-dependent effect on trophoblast cell invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtbjF&md5=25f3eae2bacec9e51fd0003a59a1d839CAS | 19007982PubMed |