Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nlrp4g is an oocyte-specific gene but is not required for oocyte maturation in the mouse

Hui Peng A B , Wenchang Zhang A , Tianfang Xiao A and Yong Zhang B C
+ Author Affiliations
- Author Affiliations

A College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.

B College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology and Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, P. R. China.

C Corresponding author. Email: zhy1956@126.com

Reproduction, Fertility and Development 26(5) 758-768 https://doi.org/10.1071/RD12409
Submitted: 27 December 2012  Accepted: 2 May 2013   Published: 11 June 2013

Abstract

The Nlrp gene family contains 20 members and plays a pivotal role in the innate immune and reproductive systems in the mouse. The aim of the present study was to analyse the Nlrp4g gene expression pattern, protein distribution and function in mouse oocyte maturation. Quantitative real-time polymerase chain reaction and in situ hybridisation were performed on Nlrp4g mRNA. Western blotting, immunohistochemistry and immunofluorescence were used to assess expression at the protein level. Confocal and immunogold electron microscopy analyses and RNA interference approach were used to determine the location of the NLRP4G protein and inhibit Nlrp4g function specifically in mouse germinal vesicle oocytes, respectively. Nlrp4g transcripts and proteins (~85 kDa) are specifically expressed in mouse ovaries, restricted to the oocytes at various follicular stages and decline with oocyte aging. There is a marked decline in transcript levels in preimplantation embryos before zygotic genome activation, but the protein remains present through to the blastocyst stage. Confocal microscopy demonstrated that this protein is localised in the cytoplasm. Immunogold electron microscopy further confirmed that NLRP4G protein was present in the cytosol rather than in oocyte cytoplasmic organelles. Furthermore, knockdown of Nlrp4g in germinal vesicle oocytes did not affect oocyte maturation. These results provide the first evidence that Nlrp4g is an oocyte-specific gene but dispensable for oocyte maturation, suggesting that this gene may play roles in mouse oogenesis and/or preimplantation development.

Additional keyword: expression pattern.


References

Bertin, J., and DiStefano, P. S. (2000). The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ. 7, 1273–1274.
The PYRIN domain: a novel motif found in apoptosis and inflammation proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFOmsQ%3D%3D&md5=5bd8190a87a762c298a2e5a24af656e1CAS | 11270363PubMed |

Biggers, J. D., McGinnis, L. K., and Raffin, M. (2000). Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63, 281–293.
Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2rsbw%3D&md5=2aab730e373b77f3dfff3b4bd6984de5CAS | 10859270PubMed |

Boyden, E. D., and Dietrich, W. F. (2006). Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244.
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlGksA%3D%3D&md5=55b786f1c61b2ed7027968996e024da7CAS | 16429160PubMed |

Bultman, S. J., Gebuhr, T. C., Pan, H., Svoboda, P., Schultz, R. M., and Magnuson, T. (2006). Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754.
Maternal BRG1 regulates zygotic genome activation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvV2ksLg%3D&md5=8001718971a74a6598a4bf3b6e639373CAS | 16818606PubMed |

Burns, K. H., Viveiros, M. M., Ren, Y., Wang, P., DeMayo, F. J., Frail, D. E., Eppig, J. J., and Matzuk, M. M. (2003). Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–636.
Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymu7w%3D&md5=2413a9cf49901ceef2a6a228d13f0f50CAS | 12714744PubMed |

Choi, Y., Qin, Y., Berger, M. F., Ballow, D. J., Bulyk, M. L., and Rajkovic, A. (2007). Microarray analyses of newborn mouse ovaries lacking Nobox. Biol. Reprod. 77, 312–319.
Microarray analyses of newborn mouse ovaries lacking Nobox.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Onsbg%3D&md5=cc7c7dbf7aa715d496a2332b5a1f6a2cCAS | 17494914PubMed |

Conti, B. J., Davis, B. K., Zhang, J., OConnor, W., Williams, K. L., and Ting, J. P. (2005). CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J. Biol. Chem. 280, 18 375–18 385.
CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2htL8%3D&md5=bf1862a4619be5f61e1167c8edbf584fCAS |

Dadé, S., Callebaut, I., Paillisson, A., Bontoux, M., Dalbies-Tran, R., and Monget, P. (2004). In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte. Biochem. Biophys. Res. Commun. 324, 547–553.
In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte.Crossref | GoogleScholarGoogle Scholar | 15474461PubMed |

Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S., Franchi, L., Nunez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K. A., Rock, K. L., Moore, K. J., Wright, S. D., Hornung, V., and Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361.
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltl2mu7w%3D&md5=b82f2d77f4008c8220571bdc07204d9aCAS | 20428172PubMed |

Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S., and Flavell, R. A. (2008). Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126.
Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGjtLg%3D&md5=73e70c5b4d8bd766cd21901a30ad795aCAS | 18496530PubMed |

Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschlager, N., Endres, S., Hartmann, G., Tardivel, A., Schweighoffer, E., Tybulewicz, V., Mocsai, A., Tschopp, J., and Ruland, J. (2009). Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436.
Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvV2ksLs%3D&md5=8fcaa3a08df7306ef3065e0174964353CAS | 19339971PubMed |

Gurtu, V. E., Verma, S., Grossmann, A. H., Liskay, R. M., Skarnes, W. C., and Baker, S. M. (2002). Maternal effect for DNA mismatch repair in the mouse. Genetics 160, 271–277.
| 1:CAS:528:DC%2BD38XhsFKqsbk%3D&md5=a72b61307c1d1b509da49e7ae605ea2fCAS | 11805062PubMed |

Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D. B., VanBuren, V., and Ko, M. S. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278.
Age-associated alteration of gene expression patterns in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Onu7k%3D&md5=af786cb895e6bf572933fbea6266f88bCAS | 15317747PubMed |

Harton, J. A., Linhoff, M. W., Zhang, J., and Ting, J. P. (2002). Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. 169, 4088–4093.
| 1:CAS:528:DC%2BD38XnvFGnt70%3D&md5=698a724c5c2b4b20ba9dba3dbad2b700CAS | 12370334PubMed |

Horikawa, M., Kirkman, N. J., Mayo, K. E., Mulders, S. M., Zhou, J., Bondy, C. A., Hsu, S. Y., King, G. J., and Adashi, E. Y. (2005). The mouse germ-cell-specific leucine-rich repeat protein NALP14: a member of the NACHT nucleoside triphosphatase family. Biol. Reprod. 72, 879–889.
The mouse germ-cell-specific leucine-rich repeat protein NALP14: a member of the NACHT nucleoside triphosphatase family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12hs7o%3D&md5=cd02dd007b305043ebb6ee9c74b47006CAS | 15590904PubMed |

Howell, C. Y., Bestor, T. H., Ding, F., Latham, K. E., Mertineit, C., Trasler, J. M., and Chaillet, J. R. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–838.
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVyisrc%3D&md5=cae6efdae7b232247a993273ccb64fb2CAS | 11290321PubMed |

Hu, W., Gauthier, L., Baibakov, B., Jimenez-Movilla, M., and Dean, J. (2010). FIGLA, a basic helix–loop–helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes. Mol. Cell. Biol. 30, 3661–3671.
FIGLA, a basic helix–loop–helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOqsbc%3D&md5=db9baad11839a0a8efbd196dce970216CAS | 20479125PubMed |

Joshi, S., Davies, H., Sims, L. P., Levy, S. E., and Dean, J. (2007). Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev. Biol. 7, 67.
Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor.Crossref | GoogleScholarGoogle Scholar | 17567914PubMed |

Kanneganti, T. D., Ozoren, N., Body-Malapel, M., Am, A., Park, J. H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E. P., Akira, S., and Nunez, G. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236.
Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGitLk%3D&md5=0760468cb3cdd16890234f35c1c1e21cCAS | 16407888PubMed |

Kim, M. H., Yuan, X., Okumura, S., and Ishikawa, F. (2002). Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs. Biochem. Biophys. Res. Commun. 296, 1372–1377.
Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wltr0%3D&md5=3d16f818490c0a98855acd029b92d9b3CAS | 12207927PubMed |

Kobe, B., and Deisenhofer, J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186.
A structural basis of the interactions between leucine-rich repeats and protein ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1yis78%3D&md5=aa009038840da70ce4c81bc7a6ffe210CAS | 7877692PubMed |

Kobe, B., and Kajava, A. V. (2001). The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732.
The leucine-rich repeat as a protein recognition motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1aqsL8%3D&md5=f7a1e5eae005f059e1d5f1c726278a37CAS | 11751054PubMed |

Leader, B., Lim, H., Carabatsos, M. J., Harrington, A., Ecsedy, J., Pellman, D., Maas, R., and Leder, P. (2002). Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4, 921–928.
Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFKmt70%3D&md5=be84be11a324153b80e8cd578b55aed5CAS | 12447394PubMed |

Leipe, D. D., Koonin, E. V., and Aravind, L. (2004). STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343, 1–28.
STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslKqt7k%3D&md5=ff602b309166ccde87e678eb3574c25aCAS | 15381417PubMed |

Li, L., Baibakov, B., and Dean, J. (2008). A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425.
A subcortical maternal complex essential for preimplantation mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOit7vL&md5=223359704b589197c846cb9597936a5fCAS | 18804437PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Ma, J., Zeng, F., Schultz, R. M., and Tseng, H. (2006). Basonuclin: a novel mammalian maternal-effect gene. Development 133, 2053–2062.
Basonuclin: a novel mammalian maternal-effect gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2itbo%3D&md5=77d4ec6841a8855d1bd3a8848a1c2d5fCAS | 16624857PubMed |

Manji, G. A., Wang, L., Geddes, B. J., Brown, M., Merriam, S., Al-Garawi, A., Mak, S., Lora, J. M., Briskin, M., Jurman, M., Cao, J., DiStefano, P. S., and Bertin, J. (2002). PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J. Biol. Chem. 277, 11 570–11 575.
PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Kgt7w%3D&md5=508184a8e4fdfef4974a7ba0767780c2CAS |

Martinon, F., Hofmann, K., and Tschopp, J. (2001). The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr. Biol. 11, R118–R120.
The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFWht7s%3D&md5=aba3e13fcde73cf490b55c102fedd7dbCAS | 11250163PubMed |

McDaniel, P., and Wu, X. (2009). Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Mol. Reprod. Dev. 76, 151–159.
Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Sjtw%3D%3D&md5=97f6277bb0a59a1de68f03cbc80e0f16CAS | 18509866PubMed |

Murdoch, S., Djuric, U., Mazhar, B., Seoud, M., Khan, R., Kuick, R., Bagga, R., Kircheisen, R., Ao, A., Ratti, B., Hanash, S., Rouleau, G. A., and Slim, R. (2006). Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat. Genet. 38, 300–302.
Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslCjtrk%3D&md5=d8278e94ace25960f45aea0d514cf881CAS | 16462743PubMed |

Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W., and Choi, A. M. (2011). Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230.
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtrzE&md5=7ac0f8a5eb10b099976fe523efe55462CAS | 21151103PubMed |

Ohsugi, M., Zheng, P., Baibakov, B., Li, L., and Dean, J. (2008). Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135, 259–269.
Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVShtLg%3D&md5=e2a7bbb9c82bcef6f16a6b382c1db623CAS | 18057100PubMed |

Pangas, S. A., Choi, Y., Ballow, D. J., Zhao, Y., Westphal, H., Matzuk, M. M., and Rajkovic, A. (2006). Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc. Natl Acad. Sci. USA 103, 8090–8095.
Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cht74%3D&md5=01aa9df4c87b85c22915e24e6ca47e29CAS | 16690745PubMed |

Pawlowski, K., Pio, F., Chu, Z., Reed, J. C., and Godzik, A. (2001). PAAD: a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends Biochem. Sci. 26, 85–87.
PAAD: a new protein domain associated with apoptosis, cancer and autoimmune diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptV2htg%3D%3D&md5=46fcdeab887b282f4cfca0616d50384cCAS | 11166558PubMed |

Payer, B., Saitou, M., Barton, S. C., Thresher, R., Dixon, J. P., Zahn, D., Colledge, W. H., Carlton, M. B., Nakano, T., and Surani, M. A. (2003). Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117.
Stella is a maternal effect gene required for normal early development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Oqsb4%3D&md5=d92693b4a290ff9af5c440abd91e5e21CAS | 14654002PubMed |

Peng, H., Chang, B., Lu, C., Su, J., Wu, Y., Lv, P., Wang, Y., Liu, J., Zhang, B., Quan, F., Guo, Z., and Zhang, Y. (2012). Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS One 7, e30344.
Nlrp2, a maternal effect gene required for early embryonic development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Cisbs%3D&md5=6be3d08a375919cdf70a5cf9994f505dCAS | 22295082PubMed |

Pennetier, S., Perreau, C., Uzbekova, S., Thelie, A., Delaleu, B., Mermillod, P., and Dalbies-Tran, R. (2006). MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev. Biol. 6, 26.
MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine.Crossref | GoogleScholarGoogle Scholar | 16753072PubMed |

Pisani, L. F., Ramelli, P., Lazzari, B., Braglia, S., Ceciliani, F., and Mariani, P. (2010). Characterization of maternal antigen that embryos require (MATER/NLRP5) gene and protein in pig somatic tissues and germ cells. J. Reprod. Dev. 56, 41–48.
Characterization of maternal antigen that embryos require (MATER/NLRP5) gene and protein in pig somatic tissues and germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVymsbY%3D&md5=8702d98ec25f20d0f148e83d87f4e7dfCAS | 19815987PubMed |

Ponsuksili, S., Brunner, R. M., Goldammer, T., Kuhn, C., Walz, C., Chomdej, S., Tesfaye, D., Schellander, K., Wimmers, K., and Schwerin, M. (2006). Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos. Biol. Reprod. 74, 577–584.
Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslejsLs%3D&md5=60e29dcfe962f37a4e3fb97112091af6CAS | 16339045PubMed |

Rajkovic, A., Pangas, S. A., Ballow, D., Suzumori, N., and Matzuk, M. M. (2004). NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 1157–1159.
NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslCmtbc%3D&md5=3271d9f3c850cf83fbba591971091e6eCAS | 15326356PubMed |

Soyal, S. M., Amleh, A., and Dean, J. (2000). FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127, 4645–4654.
| 1:CAS:528:DC%2BD3cXosl2is7o%3D&md5=07446cfe3763dde7b01fb3e5b5a92d04CAS | 11023867PubMed |

Svoboda, P., Stein, P., Hayashi, H., and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156.
| 1:CAS:528:DC%2BD3cXotVWisLY%3D&md5=a268aa7f72212551feeb4d519170af2eCAS | 10976047PubMed |

Tian, X., Pascal, G., and Monget, P. (2009). Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol. Biol. 9, 202.
Evolution and functional divergence of NLRP genes in mammalian reproductive systems.Crossref | GoogleScholarGoogle Scholar | 19682372PubMed |

Tong, Z. B., and Nelson, L. M. (1999). A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140, 3720–3726.
A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslKqs7w%3D&md5=f3f0b3a75cf8006833665184fba8e88bCAS | 10433232PubMed |

Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Mater, a maternal effect gene required for early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWhs7c%3D&md5=78d9adc4e8af0f1a9b136c41a37a55a8CAS | 11062459PubMed |

Tong, Z. B., Bondy, C. A., Zhou, J., and Nelson, L. M. (2002). A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum. Reprod. 17, 903–911.
A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs12is7k%3D&md5=b81aa93e5f4671675f834b0199f3e112CAS | 11925379PubMed |

Tong, Z. B., Gold, L., De Pol, A., Vanevski, K., Dorward, H., Sena, P., Palumbo, C., Bondy, C. A., and Nelson, L. M. (2004). Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145, 1427–1434.
Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1WitL8%3D&md5=d2da07bf6988d4ada6a11b4df5eb9c4cCAS | 14670992PubMed |

Tschopp, J., Martinon, F., and Burns, K. (2003). NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104.
NALPs: a novel protein family involved in inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFaquw%3D%3D&md5=b6d17015c8941f03c3351edbfdf256a6CAS | 12563287PubMed |

Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., Ravussin, E., Stephens, J. M., and Dixit, V. D. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188.
The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFaitw%3D%3D&md5=7a94a9502977f4c7b2edb1f58773a86eCAS | 21217695PubMed |

Wianny, F., and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.
Specific interference with gene function by double-stranded RNA in early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVyltL8%3D&md5=14f1568cdd3b8a12e3578ce64d06bd1fCAS | 10655585PubMed |

Wu, X. (2009). Maternal depletion of NLRP5 blocks early embryogenesis in rhesus macaque monkeys (Macaca mulatta). Hum. Reprod. 24, 415–424.
Maternal depletion of NLRP5 blocks early embryogenesis in rhesus macaque monkeys (Macaca mulatta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFCqsrk%3D&md5=08f54619a2faee5953f413d7096bdab3CAS | 19054779PubMed |

Wu, X., Viveiros, M. M., Eppig, J. J., Bai, Y., Fitzpatrick, S. L., and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191.
Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFSktg%3D%3D&md5=3b32ee0eacabd52499b3d8a463166900CAS | 12539046PubMed |

Yoshikawa, T., Piao, Y., Zhong, J., Matoba, R., Carter, M. G., Wang, Y., Goldberg, I., and Ko, M. S. (2006). High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expr. Patterns 6, 213–224.
High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFejtA%3D%3D&md5=06bef6e4faecd8e066e8505390b94c65CAS | 16325481PubMed |

Zhang, P., Dixon, M., Zucchelli, M., Hambiliki, F., Levkov, L., Hovatta, O., and Kere, J. (2008). Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One 3, e2755.
Expression analysis of the NLRP gene family suggests a role in human preimplantation development.Crossref | GoogleScholarGoogle Scholar | 18648497PubMed |

Zheng, P., and Dean, J. (2009). Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc. Natl Acad. Sci. USA 106, 7473–7478.
Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Khtrc%3D&md5=a97a952d59d2f512d8462112664fda5bCAS | 19376971PubMed |