Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop
Adel R. Moawad A B C G , Jie Zhu A , Inchul Choi A D , Dasari Amarnath A E , Wenchao Chen A and Keith H. S. Campbell A FA Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
B Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt.
C Present address: Department of Obstetrics and Gynecology, Urology Research Laboratory, H6-19, Royal Victoria Hospital, McGill University, 687 Pins Avenue West, Montreal, Quebec H3A 1A1, Canada.
D Present address: Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.
E Present address: Taconic Farms Inc., Five University Place Rensselaer, NY 12144–3439, USA.
F Deceased.
G Corresponding author. Email: adelreda902@hotmail.com
Reproduction, Fertility and Development 25(8) 1204-1215 https://doi.org/10.1071/RD12215
Submitted: 5 July 2012 Accepted: 30 November 2012 Published: 22 January 2013
Abstract
The cryopreservation of immature oocytes at the germinal vesicle (GV) stage would create an easily accessible, non-seasonal source of female gametes for research and reproduction. The present study investigated the ability of ovine oocytes vitrified at the GV stage using a cryoloop to be subsequently matured, fertilised and cultured in vitro to blastocyst-stage embryos. Selected cumulus–oocyte complexes obtained from mature ewes at the time of death were randomly divided into vitrified, toxicity and control groups. Following vitrification and warming, viable oocytes were matured in vitro for 24 h. Matured oocytes were either evaluated for nuclear maturation, spindle and chromosome configuration or fertilised and cultured in vitro for 7 days. No significant differences were observed in the frequencies of IVM (oocytes at the MII stage), oocytes with normal spindle and chromatin configuration and fertilised oocytes among the three groups. Cleavage at 24 and 48 h post insemination was significantly decreased (P < 0.01) in vitrified oocytes. No significant differences were observed in the proportion of blastocyst development between vitrified and control groups (29.4% v. 45.1%, respectively). No significant differences were observed in total cell numbers, the number of apoptotic nuclei or the proportion of diploid embryos among the three groups. In conclusion, we report for the first time that ovine oocytes vitrified at the GV stage using a cryoloop have the ability to be matured, fertilised and subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.
Additional keywords: oocyte, vitrification.
References
Abe, Y., Hara, K., Matsumoto, H., Kobayashi, J., Sasada, H., Ekwall, H., Rodriguez-Martinez, H., and Sato, E. (2005). Feasibility of a nylon-mesh holder for vitrification of bovine germinal vesicle oocytes in subsequent production of viable blastocysts. Biol. Reprod. 72, 1416–1420.| Feasibility of a nylon-mesh holder for vitrification of bovine germinal vesicle oocytes in subsequent production of viable blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFGqsb0%3D&md5=2f5e2921d46d535766792eabfd4ea08bCAS | 15689537PubMed |
Agca, Y., Liu, J., Peter, A. T., Critser, E. S., and Critser, J. K. (1998). Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Mol. Reprod. Dev. 49, 408–415.
| Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlOqt7c%3D&md5=8c52362d029291fc1b02d7f8dd04e7afCAS | 9508092PubMed |
Albarraćin, J. L., Morató, R., Rojas, C., and Mogas, T. (2005). Effects of vitrification in open pulled straws on the cytology of in vitro matured prepubertal and adult bovine oocytes. Theriogenology 63, 890–901.
| Effects of vitrification in open pulled straws on the cytology of in vitro matured prepubertal and adult bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 15629805PubMed |
Al-Hasani, S., Diedrich, K., van der Ven, H., Reinecke, A., Hartje, M., and Krebs, D. (1987). Cryopreservation of human oocytes. Hum. Reprod. 2, 695–700.
| 1:CAS:528:DyaL1cXntFKhsQ%3D%3D&md5=43e31839a5570739b253d68036302c2cCAS | 3437048PubMed |
Begin, I., Bhatia, B., Baldassarre, H., Dinnyes, A., and Keefer, C. L. (2003). Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology 59, 1839–1850.
| Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods.Crossref | GoogleScholarGoogle Scholar | 12566156PubMed |
Bogliolo, L., Ariu, F., Fois, S., Rosati, I., Zedda, M. T., Leoni, G., Succu, S., Pau, S., and Ledda, S. (2007). Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology 68, 1138–1149.
| Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFehs7fO&md5=1ea8b233855faf9e21bb5cbcd9f204f5CAS | 17868798PubMed |
Carroll, J., Depypere, H., and Matthews, C. D. (1990). Freeze–thaw-induced changes of the zona pellucida explains decreased rates of fertilisation in frozen–thawed mouse oocytes. J. Reprod. Fertil. 90, 547–553.
| Freeze–thaw-induced changes of the zona pellucida explains decreased rates of fertilisation in frozen–thawed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2Fms1artw%3D%3D&md5=c6fd4e62115a92df17671acfdd819a96CAS | 2250252PubMed |
Chen, S. U., Lien, Y. R., Chao, K. H., Ho, H. N., Yang, Y. S., and Lee, T. Y. (2003). Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing. A review article. Mol. Cell. Endocrinol. 202, 101–107.
| Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing. A review article.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFSnsb8%3D&md5=f170b237a355efeb5d8ffb4041f97b21CAS | 12770738PubMed |
Coticchio, G., Bonu, M. A., Bianchi, V., Flamigni, C., and Borini, A. (2005). Criteria to assess human oocyte quality after cryopreservation. Reprod. Biomed. Online 11, 421–427.
| Criteria to assess human oocyte quality after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrpslWhtw%3D%3D&md5=9e3e1569d3ff9e7d4898c6c1433cf0b5CAS | 16274599PubMed |
Dinnyes, A., Dai, Y., Jiang, S., and Yang, X. (2000). High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilisation, and somatic cell nuclear transfer. Biol. Reprod. 63, 513–518.
| High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilisation, and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltl2gtbw%3D&md5=403c89a2294432561917b0e12c422b43CAS | 10906058PubMed |
Eroglu, A., Toner, M., Leykin, L., and Toth, T. L. (1998). Cytoskeleton and polyploidy after maturation and fertilisation of cryopreserved germinal vesicle-stage mouse oocytes. J. Assist. Reprod. Genet. 15, 447–454.
| Cytoskeleton and polyploidy after maturation and fertilisation of cryopreserved germinal vesicle-stage mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czot1ymsg%3D%3D&md5=f684828afe2b5407d5ba221875572f17CAS | 9717122PubMed |
Eroglu, A., Toner, M., and Toth, T. L. (2002). Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77, 152–158.
| Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes.Crossref | GoogleScholarGoogle Scholar | 11779606PubMed |
Gomes, C. M., Silva, C. A., Acevedo, N., Baracat, E., Serafini, P., and Smith, G. D. (2008). Influence of vitrification on mouse metaphase II oocyte spindle dynamics and chromatin alignment. Fertil. Steril. 90, 1396–1404.
| Influence of vitrification on mouse metaphase II oocyte spindle dynamics and chromatin alignment.Crossref | GoogleScholarGoogle Scholar | 18359482PubMed |
Hochi, S., Kozawa, M., Fujimoto, T., Hondo, E., Yamada, J., and Oguri, N. (1996). In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification. Cryobiology 33, 300–310.
| In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283mtVWrtA%3D%3D&md5=eab26805abac624a34fdf0bb7bf803d5CAS | 8689887PubMed |
Horvath, G., and Seidel, G. E. (2008). Use of fetuin before and during vitrification of bovine oocytes. Reprod. Domest. Anim. 43, 333–338.
| Use of fetuin before and during vitrification of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFyrsLs%3D&md5=af67fe51dd8299ce6f4d203ed458017eCAS | 18069945PubMed |
Hyttel, P., Vajta, G., and Callesen, H. (2000). Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences. Mol. Reprod. Dev. 56, 80–88.
| Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlGns7c%3D&md5=e411b1d47cc316c013b618331c2bce9cCAS | 10737970PubMed |
Isachenko, V., Alabart, J. L., Nawroth, F., Isachenko, E., Vajta, G., and Folch, J. (2001). The open pulled straw vitrification of ovine GV-oocytes: positive effect of rapid cooling or rapid thawing or both? Cryo Lett. 22, 157–162.
| 1:STN:280:DC%2BD38%2FmtFCguw%3D%3D&md5=ab5f296e5623c93652130026ffb6cb6cCAS |
Jo, J. W., Jee, B. C., Suh, C. S., and Kim, S. H. (2012). The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS One 7, e37043.
| The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVyru7s%3D&md5=5c3417fad79af9a244f21c06870600fdCAS | 22649508PubMed |
Keefe, D., Liu, L., Wang, W., and Silva, C. (2003). Imaging meiotic spindles by polarization light microscopy: principles and applications to IVF. Reprod. Biomed. Online 7, 24–29.
| Imaging meiotic spindles by polarization light microscopy: principles and applications to IVF.Crossref | GoogleScholarGoogle Scholar | 12930570PubMed |
Kim, D. H., Park, H. S., Kim, S. W., Hwang, I. S., Yang, B. C., Im, G. S., Chung, H. J., Seong, H. W., Moon, S. J., and Yang, B. S. (2007). Vitrification of immature bovine oocytes by the microdrop method. J. Reprod. Dev. 53, 843–851.
| Vitrification of immature bovine oocytes by the microdrop method.Crossref | GoogleScholarGoogle Scholar | 17460392PubMed |
Kim, J. Y., Chung, K. M., Lee, C. K., and Im, K. S. (1986). Effect of trehalose as a non-permeable cryoprotectant on the survival of mouse morula frozen–thawed ultrarapidly. Korean. J. Anim. Sci. 31, 768–773.
King, W. A., Linares, T., Gustavsson, I., and Bane, A. A. (1979). Method for preparation of chromosomes from bovine zygotes and blastocysts. Vet. Sci. Commun. 3, 51–56.
| Method for preparation of chromosomes from bovine zygotes and blastocysts.Crossref | GoogleScholarGoogle Scholar |
Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A., and Trounson, A. (1999). Birth following vitrification of small number of human oocytes: case report. Hum. Reprod. 14, 3077–3079.
| Birth following vitrification of small number of human oocytes: case report.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FmvFyhtA%3D%3D&md5=12efdfa840766ee78f7cbad08ae3f4caCAS | 10601099PubMed |
Kuwayama, M., and Kato, O. (2000). Successful vitrification of human oocytes. Fertil. Steril. 74, S49.
| Successful vitrification of human oocytes.Crossref | GoogleScholarGoogle Scholar |
Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
| Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |
Lane, M., Bavister, B. D., Lyons, E. A., and Forest, K. T. (1999a). Containerless vitrification of mammalian oocytes and embryos. Nat. Biotechnol. 17, 1234–1236.
| Containerless vitrification of mammalian oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFGku7c%3D&md5=850fb1d17706784b30065ad113b15effCAS | 10585728PubMed |
Lane, M., Schoolcraft, W. B., and Gardner, D. K. (1999b). Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil. Steril. 72, 1073–1078.
| Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FlvV2mtQ%3D%3D&md5=45a9d54018846812b338bb3ad7e3b87cCAS | 10593384PubMed |
Ledda, S., Bogliolo, L., Succu, S., Ariu, F., Bebbere, D., Leoni, G. G., and Naitana, S. (2007). Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod. Fertil. Dev. 19, 13–23.
| Oocyte cryopreservation: oocyte assessment and strategies for improving survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FK&md5=cfb1bab7e0d458225d1b3cf546c118e9CAS | 17389131PubMed |
Lee, J. H., and Campbell, K. H. (2006). Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol. Reprod. 74, 691–698.
| Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKqtr4%3D&md5=fd71750405834074fb343073c3c8a1d6CAS | 16371593PubMed |
Liebermann, J., and Tucker, M. J. (2002). Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction 124, 483–489.
| Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFygtrk%3D&md5=c1c9121c6bcd3dbc39acb99a7c35e070CAS | 12361466PubMed |
Liu, R. H., Sun, Q. Y., Li, Y. H., Jiao, L. H., and Wang, W. H. (2003). Effects of cooling on meiotic spindle structure and chromosome alignment within in vitro matured porcine oocytes. Mol. Reprod. Dev. 65, 212–218.
| Effects of cooling on meiotic spindle structure and chromosome alignment within in vitro matured porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFGht7c%3D&md5=c0e09666164b4e06ba67cdfa174713c2CAS | 12704733PubMed |
Maalouf, W. E., Lee, J. H., and Campbell, K. H. (2009). Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilised ovine oocytes. Theriogenology 71, 1083–1092.
| Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilised ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2qsrg%3D&md5=9b51193a15f95b51047f63f1243c887eCAS | 19185338PubMed |
Makarevich, A. V., and Markkula, M. (2002). Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture. Biol. Reprod. 66, 386–392.
| Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSlug%3D%3D&md5=a0df473d0c3d52fcb9ccd48f18310b97CAS | 11804953PubMed |
Martino, A., Songsasen, N., and Leibo, S. P. (1996). Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod. 54, 1059–1069.
| Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFSntbw%3D&md5=aed57f6237193dc6a1adddbe8af30920CAS | 8722627PubMed |
Mavrides, A., and Morroll, D. (2002). Cryopreservation of bovine oocytes: is cryoloop vitrification the future to preserving the female gamete? Reprod. Nutr. Dev. 42, 73–80.
| Cryopreservation of bovine oocytes: is cryoloop vitrification the future to preserving the female gamete?Crossref | GoogleScholarGoogle Scholar | 12199378PubMed |
Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003a). Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation. Mol. Reprod. Dev. 64, 245–250.
| Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1yltA%3D%3D&md5=f1e3b5c32de1d9957a6dac9ef46f9137CAS | 12506358PubMed |
Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003b). Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 47, 73–81.
| Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGmur4%3D&md5=bfce7a5dc747b70551fc4226df0e5933CAS | 12963414PubMed |
Moawad, A. R., Zhu, J., Choi, I., and Campbell, K. H. S. (2010). Effect of demecolcine pre-treatment on viability, timing of first polar body extrusion, spindle configuration and subsequent development of ovine oocytes vitrified at germinal vesicle (GV) stage. Reprod. Fertil. Dev. 22, 210–211.
| Effect of demecolcine pre-treatment on viability, timing of first polar body extrusion, spindle configuration and subsequent development of ovine oocytes vitrified at germinal vesicle (GV) stage.Crossref | GoogleScholarGoogle Scholar |
Moawad, A. R., Choi, I., Zhu, J., and Campbell, K. H. S. (2011). Ovine oocytes vitrified at germinal vesicle stage as cytoplast recipients for somatic cell nuclear transfer (SCNT). Cell. Reprogram. 13, 289–296.
| Ovine oocytes vitrified at germinal vesicle stage as cytoplast recipients for somatic cell nuclear transfer (SCNT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqurzM&md5=5c14c9e426c6891ccc53bb598517f560CAS | 21718110PubMed |
Moawad, A. R., Fisher, P., Zhu, J., Choi, I., Polgar, Z., Dinnyes, A., and Campbell, K. H. S. (2012). In vitro fertilization of ovine oocytes vitrified at by solid surface veterification at germinal vesicle stage. Cryobiology 65, 139–144.
| In vitro fertilization of ovine oocytes vitrified at by solid surface veterification at germinal vesicle stage.Crossref | GoogleScholarGoogle Scholar | 22579520PubMed |
Morató, R., Izquierdo, D., Albarracín, J. L., Anguita, B., Palomo, M. J., Jiménez-Macedo, A. R., Paramio, M. T., and Mogas, T. (2008). Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification. Mol. Reprod. Dev. 75, 191–201.
| Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification.Crossref | GoogleScholarGoogle Scholar | 17474095PubMed |
Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503–508.
| Universal control mechanism regulating onset of M-phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFamtrs%3D&md5=96a6e8f678bb6c887c2c7a2786844d29CAS | 2138713PubMed |
Rall, W. F., and Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification. Nature 313, 573–575.
| Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7htFWktA%3D%3D&md5=aa84716253af0f20e0b481b61997c3c6CAS | 3969158PubMed |
Rojas, C., Palomo, M. J., Albarracin, J. L., and Mogas, T. (2004). Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49, 211–220.
| Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFahs7bI&md5=75204f0d8450da64761793128783fe95CAS | 15615607PubMed |
Sanchez-Partida, L. G., Kelly, R. D., Sumer, H., Lo, C. Y., Aharon, R., Holland, M. K., O’Bryan, M. K., and St. John, J. C. (2011). The generation of live offspring from vitrified oocytes. PLoS One 6, e21597.
| The generation of live offspring from vitrified oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVajur0%3D&md5=b977100bf95537e8cb87b289194e6378CAS | 21738724PubMed |
Schroeder, A. C., Champlin, A. K., Mobraaten, L. E., and Eppig, J. J. (1990). Developmental capacity of mouse oocytes cryopreserved before and after maturation in vitro. J. Reprod. Fertil. 89, 43–50.
| Developmental capacity of mouse oocytes cryopreserved before and after maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFyjur4%3D&md5=c2fbadb496eb905082a5caefe4bb1aeaCAS | 2115584PubMed |
Shaw, J. M., Oranratnachai, A., and Trounson, A. O. (2000). Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 59–72.
| Fundamental cryobiology of mammalian oocytes and ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFagtQ%3D%3D&md5=1cfba20883f7a59246ff5f1f8f64fecaCAS | 10735062PubMed |
Silvestre, M. A., Yaniz, J., Salvador, I., Santolaria, P., and Lopez-Gatius, F. (2006). Vitrification of pre-pubertal ovine cumulus–oocyte complexes: effect of cytochalasin B pre-treatment. Anim. Reprod. Sci. 93, 176–182.
| Vitrification of pre-pubertal ovine cumulus–oocyte complexes: effect of cytochalasin B pre-treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsr0%3D&md5=015e4dba19ec626480d178d4b074b1ffCAS | 16169689PubMed |
Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N. W., Farhudin, M., Dinnyes, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilised porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
| Developmental competence of in vitro-fertilised porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=021464eb03f30d4a2a9eb685031c44d1CAS | 17681290PubMed |
Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., Egerszegi, I., Ratky, J., Nagai, T., and Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilisation of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 73, 147–156.
| Production of good-quality porcine blastocysts by in vitro fertilisation of follicular oocytes vitrified at the germinal vesicle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrfJ&md5=6238043c4c08fc27df400569633d56b1CAS | 19864014PubMed |
Succu, S., Leoni, G. G., Bebbere, D., Berlinguer, F., Mossa, F., Bogliolo, L., Madeddu, M., Ledda, S., and Naitana, S. (2007a). Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes. Mol. Reprod. Dev. 74, 1337–1344.
| Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmtr7N&md5=9718ccf3d98731279e8c2931657d357bCAS | 17290423PubMed |
Succu, S., Leoni, G. G., Berlinguer, F., Madeddu, M., Bebbere, D., Mossa, F., Bogliolo, L., Ledda, S., and Naitana, S. (2007b). Effect of vitrification solutions and cooling upon in vitro matured prepubertal ovine oocytes. Theriogenology 68, 107–114.
| Effect of vitrification solutions and cooling upon in vitro matured prepubertal ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGht7s%3D&md5=dce80564c6e958dc0cb27d07311fe8feCAS | 17537497PubMed |
Succu, S., Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G. G., Berlinguer, F., Naitana, S., and Ledda, S. (2008). Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol. Reprod. Dev. 75, 538–546.
| Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrk%3D&md5=b7f9a17612436620152c9b0d9405ebffCAS | 17886274PubMed |
Tharasanit, T., Colenbrander, B., and Stout, T. A. (2006). Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes. Mol. Reprod. Dev. 73, 627–637.
| Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1KitLk%3D&md5=3f6df6be567992103216bc454691c7ddCAS | 16477611PubMed |
Tian, S. J., Yan, C. L., Yang, H. X., Zhou, G. B., Yang, Z. Q., and Zhu, S. E. (2007). Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration. Anim. Reprod. Sci. 101, 365–371.
| Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yjtLs%3D&md5=1ebb974a2872f480361b38172cb975b9CAS | 17293065PubMed |
Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., and Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
| Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7g%3D&md5=49d4e9194babffb16608d70dd43f2acdCAS | 9712317PubMed |
Vieira, A. D., Mazzalira, A., Barbieri, D. P., Lehmkuhl, R. C., Rubin, M. I. B., and Vajta, G. (2002). Calves born after open pulled straw vitrification of immature bovine oocytes. Cryobiology 45, 91–94.
| Calves born after open pulled straw vitrification of immature bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslSmsrs%3D&md5=917ef4d2852e0a594795891d3c4f9583CAS | 12445553PubMed |
Wang, W. H., and Keefe, D. L. (2002). Spindle observation in living mammalian oocytes with the polarization microscope and its practical use. Cloning Stem Cells 4, 269–276.
| Spindle observation in living mammalian oocytes with the polarization microscope and its practical use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSks70%3D&md5=4bf1c52b5ef2be8c97bd9d22eb970286CAS | 12398808PubMed |
Wang, W. H., Meng, L., Hackett, R. J., Odenbourg, R., and Keefe, D. L. (2001). Limited recovery of meiotic spindles in living human oocytes after cooling–rewarming observed using polarized light microscopy. Hum. Reprod. 16, 2374–2378.
| 1:STN:280:DC%2BD3MnmvFeqsw%3D%3D&md5=4d8aaed4b8d90f0dbf8ecc6e28bff6b6CAS | 11679523PubMed |
Wu, B., Tong, J., and Leibo, S. P. (1999). Effects of cooling germinal vesicle-stage bovine oocytes on meiotic spindle formation following in vitro maturation. Mol. Reprod. Dev. 54, 388–395.
| Effects of cooling germinal vesicle-stage bovine oocytes on meiotic spindle formation following in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFCltLY%3D&md5=e76f3c196c2e1d3eec174589105cd955CAS | 10542379PubMed |
Ye, J., Flint, A. P., Luck, M. R., and Campbell, K. H. S. (2003). Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Reproduction 125, 645–656.
| Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVKmurs%3D&md5=b956feb01782cdcd25b0e5f9cd531a7eCAS | 12713427PubMed |
Zhang, J., Nedambale, T. L., Yang, M., and Li, J. (2009). Improved development of ovine matured oocyte following solid surface vitrification (SSV): effect of cumulus cells and cytoskeleton stabilizer. Anim. Reprod. Sci. 110, 46–55.
| Improved development of ovine matured oocyte following solid surface vitrification (SSV): effect of cumulus cells and cytoskeleton stabilizer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgsLrK&md5=ff8f087a4df91ce364996b2b522d42efCAS | 18242892PubMed |
Zhu, J., Telfer, E. E., Fletcher, J., Springbett, A., Dobrinsky, J. R., De Sousa, P. A., and Wilmut, I. (2002). Improvement of an electrical activation protocol for porcine oocytes. Biol. Reprod. 66, 635–641.
| Improvement of an electrical activation protocol for porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitb8%3D&md5=25d51d9413cd5205a586f6882d565da4CAS | 11870069PubMed |