Using cell banks as a tool in conservation programmes of native domestic breeds: the production of the first cloned Anatolian Grey cattle
Sezen Arat A F , Arzu T. Caputcu A , Tolga Akkoc A , Serhat Pabuccuoglu B , Hakan Sagirkaya C , Umut Cirit D , Yavuz Nak C , Evren Koban A , Haydar Bagis A E , Kamber Demir B , Deniz Nak C , Adem Senunver B , Ragip Kilicaslan B , Bilginer Tuna C , Gaye Cetinkaya A , Melis Denizci A and Ozgur Aslan AA The Scientific and Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey.
B Istanbul University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination and Department of Obstetrics and Gynecology, Avcilar, Istanbul, Turkey.
C Uludag University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination and Department of Obstetrics and Gynecology, Gorukle, Bursa, Turkey.
D Dicle University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Diyarbakir, Turkey.
E Adiyaman University, Faculty of Medicine, Department of Medical Genetics, Adiyaman, Turkey.
F Corresponding author. Emails: sezen.arat@mam.gov.tr; sezenarat@yahoo.com
Reproduction, Fertility and Development 23(8) 1012-1023 https://doi.org/10.1071/RD11026
Submitted: 24 January 2011 Accepted: 6 May 2011 Published: 22 September 2011
Abstract
The aim of this study was to clone native Anatolian Grey cattle by using different donor cell types, such as fibroblast, cartilage and granulosa cells cryopreserved in a gene bank and oocytes aspirated from ovaries of Holstein cows as the recipient cytoplasm source. One male calf from fibroblast, three female calves from granulosa cells and one female calf from cartilage cells were born healthy and at normal birthweights. No calves were lost after birth. The results demonstrated that the cloned calves had the same microsatellite alleles at 11 loci as their nuclear donors. However, the mtDNAs of the five Anatolian Grey cloned calves had different haplotypes from their donor cells and mtDNA heteroplasmy could not be detected in any of the clones. The birth of healthy clones suggests that the haplotype difference between the cell and oocyte donor did not affect the pre- or post-implantation development of the bovine nuclear transfer derived embryos in our study. The results showed that well established nuclear transfer protocols could be useful in conserving endangered species. In conclusion, somatic cell banking can be suggested as a tool in conservation programmes of animal genetic resources.
Additional keywords: cloning, cryopreservation, haplotypes, mtDNA, nuclear transfer, telomere.
References
Andrabi, S. M. H., and Maxwell, W. M. C. (2007). A review of reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci. 99, 223–243.| A review of reproductive biotechnologies for conservation of endangered mammalian species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGktbc%3D&md5=7be1a22cf37005ca3924b2349c5fb34aCAS |
Arat, S., Rzucidlo, S. J., Gibbons, J., Miyoshi, K., and Stice, S. L. (2001). Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes. Mol. Reprod. Dev. 60, 20–26.
| Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWisrs%3D&md5=1e97bf4f8578d2938997fc373025967dCAS | 11550264PubMed |
Arat, S., Gibbons, J., Rzucidlo, S. J., Respess, D. S., Tumlin, M., and Stice, S. L. (2002). In vitro development of bovine nuclear transfer embryos from clonal lines of transgenic adult and fetal fibroblast cells of the same genotype. Biol. Reprod. 66, 1768–1774.
| In vitro development of bovine nuclear transfer embryos from clonal lines of transgenic adult and fetal fibroblast cells of the same genotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegu70%3D&md5=3a555e19d8cf1780f39af4d69d259b76CAS | 12021060PubMed |
Arat, S., Bagis, H., Ergin, F., Sagirkaya, H., Mercan Odaman, H., and Dinnyes, A. (2004). Cold storage of tissue as source for donor cells does not reduce the in vitro development of bovine embryos following nuclear transfer. Reprod. Fertil. Dev. 16, 135.
| Cold storage of tissue as source for donor cells does not reduce the in vitro development of bovine embryos following nuclear transfer.Crossref | GoogleScholarGoogle Scholar |
Arat, S., Tas, A., Cetinkaya, G., Akkoc, T., and Bagis, H. (2008). The effects of embryo culture mediums on reprogramming of cartilage cells from male and female cow. FEBS J. 275, 296.
Arat, S., Tas, A., Akkoc, T., Cetinkaya, G., Bagis, H., Sekmen, S., Ates, E., and Soysal, D. (2009). Effect of growth factors on development of nuclear transfer embryos from cartilage cell of an Anatolian native cow. Reprod. Domest. Anim. 44, 93.
Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overström, E. W., and Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
| Production of goats by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFWrsbY%3D&md5=c07c58db5ee525d8ff06c7c1d408e260CAS | 10331804PubMed |
Bertolini, M., and Anderson, G. B. (2002). The placenta as a contributor to production of large calves. Theriogenology 57, 181–187.
| The placenta as a contributor to production of large calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fksl2mtQ%3D%3D&md5=71773a1ad10a1d5053989a0c61f64664CAS | 11775968PubMed |
Bertolini, M., Mason, J. B., Beam, S. W., Carneiro, G. F., Sween, M. L., Kominek, D. J., Moyer, A. L., Famula, T. R., Sainz, R. D., and Anderson, G. B. (2002). Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 58, 973–994.
| Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights.Crossref | GoogleScholarGoogle Scholar | 12212896PubMed |
Betts, D., Bordignon, V., Hill, J., Winger, Q., Westhusin, M., Smith, L., and King, W. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA 98, 1077–1082.
| Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Smsbw%3D&md5=5a8046966f1380db87eed308a1b9b7a7CAS | 11158597PubMed |
Bradley, D. G., MacHugh, D. E., Cunningham, P., and Loftus, R. T. (1996). Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA 93, 5131–5135.
| Mitochondrial diversity and the origins of African and European cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVKlurc%3D&md5=6538eb09d79d759cc0a253d948d226dbCAS | 8643540PubMed |
Brem, G., and Kuhholzer, B. (2002). The recent history of somatic cloning in mammals. Cloning Stem Cells 4, 57–63.
| The recent history of somatic cloning in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Gku7k%3D&md5=43e3026857d642bb79a2ed27d95a5b34CAS | 12006157PubMed |
Chavatte-Palmer, P., Heyman, Y., Richard, C., Monget, P., LeBourhis, D., Kann, G., Chilliard, Y., Vignon, X., and Renard, J. P. (2002). Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod. 66, 1596–1603.
| Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegtb4%3D&md5=4a6e78761deb02d76b90d84946f7d11cCAS | 12021036PubMed |
Chavatte-Palmer, P., Remy, D., Cordonnier, N., Richard, C., Issenman, H., Laigre, P., Heyman, Y., and Mialot, J. P. (2004). Health status of cloned cattle at different ages. Cloning Stem Cells 6, 94–100.
| Health status of cloned cattle at different ages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFelurw%3D&md5=735544bef6c3c46e161813804132e76fCAS | 15268782PubMed |
Chavatte-Palmer, P., de Sousa, N., Laigre, P., Camous, S., Ponter, A. A., Beckers, J. F., and Heyman, Y. (2006). Ultrasound fetal measurements and pregnancy associated glycoprotein secretion in early pregnancy in cattle recipients carrying somatic clones. Theriogenology 66, 829–840.
| Ultrasound fetal measurements and pregnancy associated glycoprotein secretion in early pregnancy in cattle recipients carrying somatic clones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1WrtLc%3D&md5=6d25f88fce76d6c323fe6de55acd28b7CAS | 16530818PubMed |
Chesné, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002). Cloned rabbits production by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–369.
| Cloned rabbits production by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 11923842PubMed |
Cho, S. R., Ock, S. A., Yoo, J. G., Mohana Kumar, B., Choe, S. Y., and Rho, G. J. (2005). Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts. Reprod. Domest. Anim. 40, 171–176.
| Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3hvVSlsw%3D%3D&md5=8b80ac6d3cdaca725cc305a09555c6ebCAS | 15819970PubMed |
Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Cloned transgenic calves from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
| Cloned transgenic calves from nonquiescent fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Gqt78%3D&md5=eb21fec63c7d3d06315a255b9fb79fb4CAS | 9596577PubMed |
Cooke, S., Quinn, P., Kime, L., Ayres, C., Tyler, J. P., and Driscoll, G. L. (2002). Improvement in early human embryo development using new formulation sequential stage-specific culture media. Fertil. Steril. 78, 1254–1260.
| Improvement in early human embryo development using new formulation sequential stage-specific culture media.Crossref | GoogleScholarGoogle Scholar | 12477521PubMed |
Edwards, J. L., Schrick, F. N., McCracken, M. D., Van Amstel, S. R., Hopkins, F. M., Welborn, M. G., and Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123.
| Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szhslaltA%3D%3D&md5=c0cc2e11b82963d7f03c95a727d07d0bCAS | 12846674PubMed |
Evans, M. J., Gurer, C., Loike, J. D., Wilmut, I., Schnieke, A. E., and Schon, E. A. (1999). Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat. Genet. 23, 90–93.
| Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFWhtrg%3D&md5=0d07ed41dab1a335dd864eb9762d87eaCAS | 10471506PubMed |
FAO (2007). Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration, Rome. Available at ftp://ftp.fao.org/docrep/fao/010/a1404e/a1404e00.pdf [Accessed 6 September 2011]
Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
| Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |
Forsyth, J. T., and Wells, D. N. (2006). Health and neonatal care of bovine clones. Methods Mol. Biol. 348, 91–108.
| Health and neonatal care of bovine clones.Crossref | GoogleScholarGoogle Scholar | 16988374PubMed |
Fröhlich, M., Malicev, E., Gorensek, M., Knezevic, M., and Velikonja, N. K. (2007). Evaluation of rabbit auricular chondrocyte isolation and growth parameters in cell culture. Cell Biol. Int. 31, 620–625.
| Evaluation of rabbit auricular chondrocyte isolation and growth parameters in cell culture.Crossref | GoogleScholarGoogle Scholar | 17293128PubMed |
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. A. (2003). Cloned horse born to its dam twin. Nature 424, 635.
| Cloned horse born to its dam twin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVektbc%3D&md5=f4253255a8307f9d9ebecb72f24e7f2eCAS | 12904778PubMed |
Gibbons, J., Arat, S., Rzucidlo, S. J., Waltenburg, R., Respess, D. S., Venable, A. M., and Stice, S. L. (2002). Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol. Reprod. 66, 895–900.
| Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCltLo%3D&md5=ed0ada652d05f9a4b670f79515f5d741CAS | 11906906PubMed |
Han, Z. M., Chen, D. Y., Li, J. S., Sun, Q. Y., Wan, Q. H., Kou, Z. H., Rao, G., Lei, L., Liu, Z. H., and Fang, S. G. (2004). Mitochondrial DNA heteroplasmy in calves cloned by using adult somatic cell. Mol. Reprod. Dev. 67, 207–214.
| Mitochondrial DNA heteroplasmy in calves cloned by using adult somatic cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKrug%3D%3D&md5=d87cf8946b2183e64de62a6c04a16097CAS | 14694437PubMed |
Harley, C. B., Vaziri, H., Counter, C. M., and Allsopp, R. C. (1992). The telomere hypothesis of cellular aging. Exp. Gerontol. 27, 375–382.
| The telomere hypothesis of cellular aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlSlsbg%3D&md5=c80bb473cc86ec7775851d4ae9570c4fCAS | 1459213PubMed |
Harumi, T., Furukawa, T., Awata, T., Kumagai, M., and Yasue, H. (1994). Polymerase chain reaction-single strand conformation polymorphisms in D-loop region of the bovine mitochondrial DNA. Anim Sci Tech (Jpn) 65, 149–151.
| 1:CAS:528:DyaK2cXktVagsbw%3D&md5=9a0490ac1a5c1db64aba0c4581a48438CAS |
Heyman, Y., Chavatte-Palmer, P., LeBourhis, D., Camous, S., Vignon, X., and Renard, J. P. (2002a). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
| Frequency and occurrence of late-gestation losses from cattle cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ymug%3D%3D&md5=8e9e6531b48e2490e50dc5e5c42d3280CAS | 11751257PubMed |
Heyman, Y., Zhou, Q., Lebourhis, D., Chavatte-Palmer, P., Renard, J. P., and Vignon, X. (2002b). Novel approaches and hurdles to somatic cloning in cattle. Cloning Stem Cells 4, 47–55.
| Novel approaches and hurdles to somatic cloning in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Gku7g%3D&md5=5218d7620a4f78de42e7e617756cd3d2CAS | 12006156PubMed |
Hill, J. R., and Chavatte-Palmer, P. (2002). Pregnancy and neonatal care of cloned animals. In ‘Principles of Cloning’. (Ed. J. Cibelli.) pp. 247–266. (San Diego Academic Press: An Elsevier Science Imprint: San Diego, CA.)
Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., Shin, T., Spencer, T. E., Thompson, J. A., Winger, Q. A., and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
| Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=a0fe8919a46af7cfe7a3ebc5ac55229cCAS | 11090450PubMed |
Jiao, F., Yan, J. B., Yang, X. Y., Li, H., Wang, Q., Huang, S. Z., Zeng, F., and Zeng, Y. T. (2007). Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol. Reprod. Dev. 74, 1278–1286.
| Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfI&md5=5e4d2dcca12ecfcb25c3472c65959208CAS | 17290429PubMed |
Kato, Y., Tani, T., Sotomaru, Y., Kurosawa, K., Kato, J. Y., Doguchi, H., Yasue, H., and Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098.
| Eight calves cloned from somatic cells of a single adult.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVyisro%3D&md5=523898a7da2ff32d572e9af37d12f423CAS | 9851933PubMed |
Kato, Y., Tani, T., and Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 120, 231–237.
| 1:CAS:528:DC%2BD3cXovVajtbc%3D&md5=3600fbddc9ac6002a6b53cc0f63045f6CAS | 11058438PubMed |
Krisher, R. L., Lane, M., and Bavister, B. D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–1352.
| Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVejtr4%3D&md5=58e3da4959e943389268a49d2cc369adCAS | 10330091PubMed |
Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M., and Yang, X. (2000). Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl. Acad. Sci. USA 97, 990–995.
| Six cloned calves produced from adult fibroblast cells after long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpvFehsQ%3D%3D&md5=daf9343c4cc8ba4ce7349fc31bac1abeCAS | 10655472PubMed |
Kurome, M., Hisatomi, H., Matsumoto, S., Tomii, R., Ueno, S., Hiruma, K., Saito, H., Nakamura, K., Okumura, K., Matsumoto, M., Kaji, Y., Endo, F., and Nagashima, H. (2008). Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J. Reprod. Dev. 54, 254–258.
| Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 18490858PubMed |
Lanza, R. P., Cibelli, J., Diaz, F., Moraes, C., Farin, P. W., Farin, C. E., Hammer, C. J., West, M. D., and Damiani, P. (2000). Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90.
| Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFShu78%3D&md5=1a3875e108a49c9ea391b171e0df8bffCAS | 16218862PubMed |
Lanza, R. P., Cibelli, J. B., Faber, D., Sweeney, R. W., Henderson, B., Nevala, W., West, M. D., and Wettstein, P. J. (2001). Cloned cattle can be healthy and normal. Science 294, 1893–1894.
| Cloned cattle can be healthy and normal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFWiu74%3D&md5=861da97db6ff5ef8751e23a2f1147906CAS | 11729307PubMed |
Leon-Quinto, T., Simon, M. A., Cadenas, R., Jones, J., Martinez-Hernanez, M., Moreno, J. M., Vargas, A., Martinez, F., and Soria, B. (2009). Developing biological resource banks as a supporting tool for wildlife reproduction and conservation: the Iberian lynx bank as a model for other endangered species. Anim. Reprod. Sci. 112, 347–361.
| Developing biological resource banks as a supporting tool for wildlife reproduction and conservation: the Iberian lynx bank as a model for other endangered species.Crossref | GoogleScholarGoogle Scholar | 18585877PubMed |
Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Shamim, M. H., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from somatic cells. Nature 436, 641.
| Dogs cloned from somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=beef6963f291a29dd3a6507a51bf57f9CAS | 16079832PubMed |
Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S. M., Zhou, Q., Renard, J. P., Leno, G. H., and Engelhardt, J. F. (2006). Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 293, 439–448.
| Cloned ferrets produced by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVOmsro%3D&md5=d3020a0d4aec91330e9051240d4ad8e2CAS | 16584722PubMed |
Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M., and Cunningham, P. (1994). Evidence for two independent domestications of cattle. Proc. Natl Acad. Sci. USA 91, 2757–2761.
| Evidence for two independent domestications of cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7psFyhsA%3D%3D&md5=ec9645b3bcd4789d41a9f920ec67f7d1CAS | 8146187PubMed |
Loi, P., Ptak, G., Barboni, B., Fulka, J., Cappai, P., and Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964.
| Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2msL8%3D&md5=7c1325b31cf00bc9d5d6cb3d0a41ccecCAS | 11581663PubMed |
Lonergan, P., O’Kearney-Flynn, M., and Boland, M. P. (1999). Effect of protein supplementation and presence of an antioxidant on the development of bovine zygotes in synthetic oviduct fluid medium under high or low oxygen tension. Theriogenology 51, 1565–1576.
| Effect of protein supplementation and presence of an antioxidant on the development of bovine zygotes in synthetic oviduct fluid medium under high or low oxygen tension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFyis7w%3D&md5=ea7c14569e82994ba40f239bb0776a5eCAS | 10729083PubMed |
Mannen, H., Kohno, M., Nagata, Y., Tsuji, S., Bradley, D. G., Yeo, J. S., Nyamsamba, D., Zagdsuren, Y., Yokohama, M., Nomura, K., and Amano, T. (2004). Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet. Evol. 32, 539–544.
| Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1elu7Y%3D&md5=7fffe35dc526c6bef0c8ba9e3ae7a4cfCAS | 15223036PubMed |
Meirelles, F. V., Bordignon, V., Watanabe, Y., Watanabe, M., Dayan, A., Lobo, R. B., Garcia, J., and Smith, L. C. (2001). Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158, 351–356.
| 1:CAS:528:DC%2BD3MXkt1Ojsbg%3D&md5=a30efc2c5844e28bfada37c504cc71ebCAS | 11333243PubMed |
Miretti, M. M., Pereira, H. A., Poli, M. A., Contel, E. P. B., and Ferro, J. A. (2002). African-derived mitochondria in South American native cattle breeds (Bos taurus): evidence of a new taurine mitochondrial lineage. J. Hered. 93, 323–330.
| African-derived mitochondria in South American native cattle breeds (Bos taurus): evidence of a new taurine mitochondrial lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFyku78%3D&md5=a5ce2a3b2a90e85a847b4a107419b28eCAS | 12547920PubMed |
Miyashita, N., Shiga, K., Yonai, M., Kaneyama, K., Kobayashi, S., Kojima, T., Goto, Y., Kishi, M., Aso, H., Suzuki, T., Sakaguchi, M., and Nagai, T. (2002). Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 66, 1649–1655.
| Remarkable differences in telomere lengths among cloned cattle derived from different cell types.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegtbk%3D&md5=a5675e316b0b694fa12349ea4326d5e9CAS | 12021043PubMed |
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. F. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
| Pig cloning by microinjection of fetal fibroblast nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1WhsL8%3D&md5=70d9d857808967692cf9e4ab5f7ff11cCAS | 10947985PubMed |
Pace, M. M., Augenstein, M. L., Betthauser, J. M., Childs, L. A., Eilertsen, K. J., Enos, J. M., Forsberg, E. J., Golueke, P. J., Graber, D. F., Kemper, J. C., Koppang, R. W., Lange, G., Lesmeister, T. L., Mallon, K. S., Mell, G. D., Misica, P. M., Pfister-Genskow, M., Strelchenko, N. S., Voelker, G. R., Watt, S. R., and Bishop, M. D. (2002). Ontogeny of cloned cattle to lactation. Biol. Reprod. 67, 334–339.
| Ontogeny of cloned cattle to lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2iurk%3D&md5=1c25534805af1a6f5f9ec9babe28f25bCAS | 12080037PubMed |
Panarace, M., Aguero, J. I., Garrote, M., Jauregui, G., Segovia, A., Cane´, L., Gutierrez, J., Marfil, M., Rigali, F., Pugliese, M., Young, S., Lagioia, J., Garnil, C., Forte Pontes, J. E., Ereno Junio, J. C., Mower, S., and Medina, M. (2007). How healthy are clones and their progeny: 5 years of field experience. Theriogenology 67, 142–151.
| How healthy are clones and their progeny: 5 years of field experience.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jisVWhtw%3D%3D&md5=876eac7590452b3cbd7299b6ff8d7369CAS | 17067665PubMed |
Peura, T. T., Hartwich, K. M., Hamilton, H. M., and Walker, S. K. (2003). No differences in sheep somatic cell nuclear transfer outcomes using serum-starved or actively growing donor granulosa cells. Reprod. Fertil. Dev. 15, 157–165.
| No differences in sheep somatic cell nuclear transfer outcomes using serum-starved or actively growing donor granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svotlGgtA%3D%3D&md5=1553b06213919efd541c175240f6d2a8CAS | 12921702PubMed |
Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. S. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
| Cloned pigs produced by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvkt12rug%3D%3D&md5=3ccec6308a7773d2eafeee56add7c38fCAS | 10993078PubMed |
Rieger, D., Luciano, A. M., Modina, S., Pocar, P., Lauria, A., and Gandolfi, F. (1998). The effect of epidermal growth factor and insulin-like growth factor I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro. J. Reprod. Fertil. 112, 123–130.
| The effect of epidermal growth factor and insulin-like growth factor I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKqtLw%3D&md5=de49347abcf16ce1d7dc0a5331ec9483CAS | 9538337PubMed |
Ryder, O. A. (2002). Cloning advances and challenges for conservation. Trends Biotechnol. 20, 231–232.
| Cloning advances and challenges for conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjtl2isL0%3D&md5=1b78d6d63ebdebb28d32820b6b98efdaCAS | 12007484PubMed |
Schaetzlein, S., and Rudolph, K. L. (2005). Telomere length regulation during cloning, embryogenesis and ageing. Reprod. Fertil. Dev. 17, 85–96.
| Telomere length regulation during cloning, embryogenesis and ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurbK&md5=894ef1711a4f6df80c243c10c523ec4aCAS | 15745634PubMed |
Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., and Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77, 285–291.
| Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gt7s%3D&md5=4e56563b3ac563de2ddbac92e8a98e77CAS | 17475931PubMed |
Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
| A cat cloned by nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1yhtbk%3D&md5=826fefae5a710cf05a920ec744543161CAS | 11859353PubMed |
Smith, L. C., Bordignon, V., Babkine, M., Fecteau, G., and Keefer, C. (2000). Benefits and problems with cloning animals. Can. Vet. J. 4, 919–924.
Steeves, T. E., and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
| Temporal and differential effects of amino acids on bovine embryo development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqtr4%3D&md5=6e6721b9d4b0106e71f21289f60761ccCAS | 10456851PubMed |
Steinborn, R., Schinogl, P., Zakhartchenko, V., Achmann, R., Schernthaner, W., Stojkovic, M., Wolf, E., Muller, M., and Brem, G. (2000). Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat. Genet. 25, 255–257.
| Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKlt7Y%3D&md5=4691279024c2245b97945bd1bd7171e1CAS | 10888867PubMed |
Stice, S. L., Gibbons, J., Rzucidlo, S. J., and Baile, C. A. (2000). Improvements in NT procedures will increase commercial utilization of animal cloning. Asian-australas. J. Anim. Sci. 13, 856–860.
Stolzing, A., and Scutt, A. (2006). Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5, 213–224.
| Age-related impairment of mesenchymal progenitor cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVSqt7Y%3D&md5=a5ce2eda5a0a27843ec7036994fa84dbCAS | 16842494PubMed |
Swain, J. E., Bormann, C. L., and Krisher, R. L. (2001). Development and viability of in vitro derived porcine blastocyst cultured in NCSU23 and G1.2/G2.2 sequential medium. Theriogenology 56, 459–469.
| Development and viability of in vitro derived porcine blastocyst cultured in NCSU23 and G1.2/G2.2 sequential medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ehsbs%3D&md5=dd1d0e63f39dc84b5201dd2afba397b7CAS | 11516125PubMed |
Takeda, K., Akagi, S., Kaneyama, K., Kojima, T., Takahashi, S., Imai, H., Yamanaka, M., Onishi, A., and Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol. Reprod. Dev. 64, 429–437.
| Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsro%3D&md5=e42bde7d8e3bffe57ef5eb745f043908CAS | 12589655PubMed |
Tas, A., Arat, S., Cetinkaya, G., Akkoc, T., and Bagis, H. (2009). The effect of electrical pulse on development of nuclear transfer (NT) bovine embryos from cartilage cells. Reprod. Fertil. Dev. 21, 126–127.
| The effect of electrical pulse on development of nuclear transfer (NT) bovine embryos from cartilage cells.Crossref | GoogleScholarGoogle Scholar |
Thompson, J. G., Mitchell, M., and Kind, K. (2007). Embryo culture and long-term consequences. Reprod. Fertil. Dev. 19, 43–52.
| Embryo culture and long-term consequences.Crossref | GoogleScholarGoogle Scholar | 17389134PubMed |
Tian, X. C., Xu, J., and Yang, X. (2000). Normal telomere lengths found in cloned cattle. Nat. Genet. 26, 272–273.
| Normal telomere lengths found in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWhsLw%3D&md5=15a327439b2549decaa9c1385c2ebc22CAS | 11062462PubMed |
Van Langendonckt, A., Donnay, I., Scuurbiers, N., Auquier, P., Carolan, C., and Massip, A. (1997). Effect of supplementation with fetal calf seum on development of bovine embryos in synthetic oviduct fluid medium. J. Reprod. Fertil. 109, 87–93.
| Effect of supplementation with fetal calf seum on development of bovine embryos in synthetic oviduct fluid medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gnur4%3D&md5=e80641787eedd94e094870d27d8539e5CAS | 9068418PubMed |
Vignon, X., Chesne, P., Le Bourhis, D., Flechon, J. E., Heyman, Y., and Renard, J. P. (1998). Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells. C. R. Acad. Sci. III 321, 735–745.
| Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2Fis1OgsQ%3D%3D&md5=37525ebe4a876d1981060cc81b18e408CAS | 9809205PubMed |
Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
| Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsbs%3D&md5=ad057dde7a792c460b932ac9fa1474fcCAS | 9690471PubMed |
Wang, L. P., Geng, R. Q., and Chang, H. (2009). Mitochondrial DNA diversity and origin of Chinese Leiqiong cattle. Journal of Animal and Veterinary Advances 8, 1312–1315.
| 1:CAS:528:DC%2BD1MXovFejsLs%3D&md5=524f54908e0b394485c3f84551ebb865CAS |
Wani, N. A., Wernery, U., Hassan, F. A. H., Wernery, R., and Skidmore, J. A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod. 82, 373–379.
| Production of the first cloned camel by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsbw%3D&md5=29a8ff9004a0250602c313d982c323d9CAS | 19812298PubMed |
Wells, D. N. A., Misica, P. M., Tervit, H. R., and Vivanco, W. H. (1998). Adult somatic cell NT in used to preserve the last surviving cow of Enderby Island cattle breed. Reprod. Fertil. Dev. 10, 369–378.
| Adult somatic cell NT in used to preserve the last surviving cow of Enderby Island cattle breed.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3otFyhsg%3D%3D&md5=09c72b6002b9f23222ac2a56751b82aaCAS |
Wells, D. N., Misica, P. M., and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005.
| Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGqur4%3D&md5=389a94be47a7f5ad3d04e90fab5a6624CAS | 10084977PubMed |
Wells, D. N., Forsyth, J. T., McMillan, V., and Oback, B. (2004). The health of somatic cell cloned cattle and their offspring. Cloning Stem Cells 6, 101–110.
| The health of somatic cell cloned cattle and their offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFelur0%3D&md5=8765a993aabe17bc460ab4ea46624b50CAS | 15268783PubMed |
Wildt, D. E., and Wemmer, C. (1999). Sex and wildlife: the role of reproductive science in conservation. Biodivers. Conserv. 8, 965–976.
| Sex and wildlife: the role of reproductive science in conservation.Crossref | GoogleScholarGoogle Scholar |
Wilmut, I., Schnieke, A., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
| Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=be70a94a4cd6cfedb112a9a140c92995CAS | 9039911PubMed |
Woods, G. L., White, K. L., Vanderwall, D. K., Li, G. P., Aston, K. I., Bunch, T. D., Meerdo, L. N., and Pate, B. J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
| A mule cloned from fetal cells by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1KhurY%3D&md5=353dbf585228e52ed9d445323da8e438CAS | 12775846PubMed |
Yan, Z. H., Zhou, Y. Y., Fu, J., Jiao, F., Zhao, L. W., Guan, P. F., Huang, S. Z., Zeng, Y. T., and Zeng, F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 10, 31.
| Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Sjsr8%3D&md5=57afcb1d8ad6f2e701fb8edd0fc68774CAS | 20302653PubMed |
Yang, X. Y., Li, H., Ma, Q. W., Yan, J. B., Zhao, J. G., Li, H. W., Shen, H. Q., Liu, H. F., Huang, Y., Huang, S. Z., Zeng, Y. T., and Zeng, F. (2006). Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer. Reproduction 132, 733–739.
| Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWktbrK&md5=8281c577f5aa7e94e7f6d0ec697bf7c4CAS | 17071774PubMed |
Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
| Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=cff78c8ba0918655e205b40cf2dd6b49CAS | 9829550PubMed |
Zhou, Q., Renard, J. P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A., and Cozzi, J. (2003). Generation of fertile cloned rates by regulating oocyte activation. Science 302, 1179.
| Generation of fertile cloned rates by regulating oocyte activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlehur8%3D&md5=c318c01ac84a2218954981e466e6c87cCAS | 14512506PubMed |